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Abstract. Since more than 30 years, the equiangular Cubed Sphere CSN has been used
in many domains of Computational Physics, in competition with other spherical grids (the
longitude-latitude grid, the icosahedral grid, the yin-yang grid, the doubly periodic grid, and
so on). Previous studies have analyzed the relation between the set of nodes CSN and inter-
polation and approximation with Spherical Harmonics. An outcome has been the design of a
series of quadrature rules. Here we continue our analysis of the Cubed Sphere by focusing our
attention to the �low resolution� case N ∈ {1, 2, 3, 4}. In this case, the nodes are all located
along meridians with longitude π

4
mod π

2N
, and we exhibit a 4N − 1 accurate quadrature rule

with nodes CSN and explicit positive weights. The geometry of the grid is used to compute
the weights by integration of a speci�c Lagrange interpolating polynomial, and to prove the
optimality of the rule. The particular rule obtained for N = 4 uses the 98 nodes of the grid
CS4, and reaches a remarkable degree of accuracy of 15. A series of numerical results are shown,
assessing the interest of the present analysis.

1. Introduction

The Cubed Sphere CSN belongs to the family of spherical grids whose nodes are clustered in six
panels mirroring the six faces of a Cube [4,16,18]. Within the six panels, the nodes are arranged
along great circle sections, with vertical or horizontal orientation. In [6�8], various theoretical
and numerical results have been presented, supporting the interest of CSN as a discrete spherical
model, in relation to particular subsets of Spherical Harmonics (called SH hereafter). Here, we
continue the study of the relation CSN/SH by restricting our attention to the particular case of
�small� Cubed Sphere grids CSN with the resolution parameter N ∈ {1, 2, 3, 4}. The grid CS1
is just the 8 vertices of the inscribed cube. The case N = 4 corresponds to a 98 nodes grid.
In these four cases, the nodes of CSN are all located along a set of meridians with longitude
π
4 mod π

2N , a property not true for N > 4. We take bene�t from this property in a framework
of quadrature rules.

We analytically integrate new Lagrange interpolating polynomials. Explicit formulas for the
associated weights are derived, showing their positivity. The order of the rule is 4N − 1, the
degree of the interpolating polynomial. It is more accurate than 2N − 1, which is the �cut-o��
order naturally associated with CSN [8]. This shows that �small� Cubed Spheres inherit some
extra approximation accuracy, a mathematical observation of interest in itself. In addition, this
accuracy is proved to be optimal. Of particular interest is the CS4 grid (98 nodes), associated
with a rule of order 15. This simple rule, with nodes and associated positive weights given
analytically, seems new. It can be attractive to use in certain circumstances.

The outline is as follows. Section 2 �xes the geometric notation. In Section 3 our quadrature
rule is described as a corollary of a new Lagrange interpolation. Section 4 comments on the
relations with other quadrature rules and several numerical results are shown. The observed
accuracy competes with the famous Lebedev's rules with similar spatial resolution. Some per-
spectives are drawn in Section 5. Finally, we provide in Appendix 6 a short Matlab code which
implements the rules.
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Figure 1. Equiangular Cubed Sphere CSN (N = 6). By octahedral symmetry,
the grid CSN (.) can be deduced from its restriction TN (o) to the spherical
triangle {0 ≤ x3 ≤ x2 ≤ x1 ≤ 1} (in gray). Bold lines (in gray), resp. the
chessboard (in white/light gray), show the radial projection of the cube [−1, 1]3,
resp. the dual octahedron, on the sphere S2. Plotted lines are great circle sections
passing through points of CSN and through vertices of the octahedron.

2. Cubed Sphere notation

For a given resolution parameter N ≥ 1, the Cubed Sphere CSN ⊂ S2, displayed in Fig. 1, is
the set of nodes given by

CSN ≜
{

1√
1+u2+v2

(±1, u, v), 1√
1+u2+v2

(u,±1, v), 1√
1+u2+v2

(u, v,±1);

u = tanϕj , v = tanϕk, 0 ≤ j, k ≤ N
}
,

where
ϕi := −π

4 + i π
2N ∈ [−π

4 ,−
π
4 + π), 0 ≤ i ≤ 2N − 1.

Let G be the octahedral group,

G =
{[
ϵ1eσ1 ϵ2eσ2 ϵ3eσ3

]
, σ ∈ S3, ϵ ∈ {−1, 1}3

}
, (1)

where e1 = (1, 0, 0), e2 = (0, 1, 0), e3 = (0, 0, 1), and S3 denotes the permutation group of
{1, 2, 3}. It turns out that the set of nodes CSN is invariant under the action of the group G, as
proved in [4]. Therefore, the grid CSN can be expressed as a disjoint union of orbits,

CSN =
⋃

z∈TN

O(z), with O(z) := {Qz, Q ∈ G}, (2)

where TN ⊂ CSN is the subset of nodes located in the spherical triangle {x ∈ S2 : 0 ≤ x3 ≤ x2 ≤
x1 ≤ 1},

TN ≜

{
zj,k := 1√

1+tan2 ϕj+tan2 ϕk

(1, tanϕj , tanϕk), ⌈N2 ⌉ ≤ k ≤ j ≤ N

}
. (3)

In the particular case N = 1, 2, 3, 4 (low-resolution Cubed Sphere), the following geometric
property holds, see Fig. 2.

Lemma 1. For N ∈ {1, 2, 3, 4}, the set of nodes CSN is included in a set of equiangular merid-
ians, (see Fig. 2),

CSN ⊂ MN := {x(θ, ϕ), with − π
2 ≤ θ ≤ π

2 , ϕ ≡ π
4 [ π

2N ]}, N ∈ {1, 2, 3, 4}, (4)

with
x(θ, ϕ) = (cos θ cosϕ, cos θ sinϕ, sin θ), −π

2 ≤ θ ≤ π
2 , ϕ ∈ R. (5)

Date: November 21, 2024.
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Figure 2. For N ∈ {1, 2, 3, 4}, the equiangular Cubed Sphere CSN is included
in a set MN based on equiangular meridian circles, as in (4); the �generating� set
TN is reported in Table 1.

N x1 x2 x3 ωopt(x1, x2, x3) |CSN | Degree

1 1√
3

1√
3

1√
3

π
2 8 3

1√
3

1√
3

1√
3

9π
70

2 1√
2

1√
2

0 16π
105 26 7

1 0 0 4π
21

1√
3

1√
3

1√
3

9π
140

3 1√
2+t2

1√
2+t2

t√
2+t2

61π
840 − 3π

√
3

560
1√

1+2t2
t√

1+2t2
t√

1+2t2
61π
840 + 3π

√
3

560 56 11

with t = 2−
√
3

1√
3

1√
3

1√
3

729π
20020

1√
2+s2

1√
2+s2

s√
2+s2

2053π
51480 − 183π

√
2

80080

4 1√
1+2s2

s√
1+2s2

s√
1+2s2

2053π
51480 + 183π

√
2

80080 98 15
1√
2

1√
2

0 512π
15015

1√
1+s2

s√
1+s2

0 2048π
45045

1 0 0 736π
15015

with s =
√
2− 1

Table 1. Optimal quadrature weights on the Cubed Sphere CSN , 1 ≤ N ≤ 4.
Weights ωopt(x1, x2, x3), (x1, x2, x3) ∈ TN , with TN de�ned in (3), are enumer-
ated. An octahedral weight ωopt : CSN → R, with |CSN | = 6N2 + 2 nodes,
is deduced by octahedral invariance. Theorem 3 shows that the corresponding
quadrature rule has the maximum degree of accuracy, 4N − 1.

3. Quadrature rule on the Cubed Sphere

3.1. A 4N − 1 Lagrange polynomial on CSN . For all D ≥ 0, the space of polynomials in
(x1, x2, x3) ∈ R3 with total degree less or equal to D is denoted by PD,

PD = span{(x1, x2, x3) ∈ R3 7→ xα1x
β
2x

γ
3 , with 0 ≤ α, β, γ ≤ D, α+ β + γ ≤ D}.

The space of Spherical Harmonics of degree less or equal to D, denoted by YD, is de�ned by
restricting the harmonic polynomials in PD to the sphere S2. A basic result is that [2, Corollary
2.15]

YD = {p|S2 , p ∈ PD}.
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Figure 3. Covering of the equiangular Cubed Sphere CSN by means of great
circles. Here, for z ∈ TN , we have plotted 2N − 1 great circles through the
poles (0, 0,±1), and 2N − 1 great circles through (0,±1, 0). These circles cover
CSN \ {z,−z}. By construction, the polynomial Lz in (8) vanishes along these
circles, thus Lz vanishes on CSN \ {z,−z}.

We call �grid function� a real function de�ned at the nodes in CSN . For a given function
f : S2 → R, we call f∗ the grid function f |CSN . Studying CSN as collocation nodes for p ∈ PD,
or equivalently for p ∈ YD, naturally leads to analyze the application

p ∈ PD 7→ p∗ ≜ p|CSN . (6)

An important tool for analyzing the surjectivity of the application (6) is the construction of suit-
able Lagrange interpolating polynomials. For all z ∈ CSN , an elementary Lagrange polynomial
Lz satis�es

Lz(z
′) =

{
1, if z′ = z,

0, if z′ ̸= z,
z, z′ ∈ CSN . (7)

With Lz at hand, the polynomial p =
∑

z∈CSN
f(z)Lz ∈ PD interpolates f∗ in PD.

A straightforward elementary polynomial Lz is obtained by

Lz(x) =
∏

z′∈CSN\{z}

1− z′ · x
1− z′ · z

, z ∈ CSN .

This shows the surjectivity of the application (6) for D large enough (D = |CSN |−1 = 6N2+1).
In fact, using the great circle arrangement structure of CSN , a more useful Lagrange polynomial
of degree 4N−1 can be constructed, [5, Lemma 6.1]. Basically, instead of considering one tangent
plane per grid point (1− z′ · x = 0) as above, we introduce great circles passing through �many�
points of the grid (u · x = 0).

Theorem 2 (Lagrange interpolation with degree 4N − 1 on CSN ). Let f : S2 → R be a regular
function. Then, for all N ≥ 1, there exists a polynomial p ∈ P4N−1 interpolating f∗ at CSN
nodes, i.e. p∗ = f∗.

Proof. We build an elementary polynomial Lz for all z ∈ CSN . Consider �rst the case z = zj,k ∈
TN de�ned in (3), with ⌈N2 ⌉ ≤ k ≤ j ≤ N . The polynomial Lz ∈ P4N−1 is de�ned as a product
of 4N − 1 polynomials of degree 1 by

Lz(x) =
1 + z · x

2

 ∏
0≤m≤2N−1

m ̸=j

(− sinϕm, cosϕm, 0) · x
(− sinϕm, cosϕm, 0) · z


 ∏

0≤n≤2N−1
n̸=k

(− sinϕn, 0, cosϕn) · x
(− sinϕn, 0, cosϕn) · z

 .

(8)
By construction, Lz vanishes on the tangent plane at −z (1+z·x = 0), yielding Lz(−z) = 0. Also,
Lz vanishes on great circles not containing z, de�ned by (− sinϕm, cosϕm, 0) ·x = 0 with m ̸= j,
(− sinϕn, 0, cosϕn) ·x = 0 with n ̸= k. As shown in Fig. 3, each node z′ ∈ CSN \{z,−z} belongs
to at least one of these circles, yielding Lz(z

′) = 0. Furthermore, the factors are normalized such
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that Lz(z) = 1. Finally, Lz satis�es (7). Next, �x a node z ∈ CSN \TN . In this case, there are a
node zj,k ∈ TN (with ⌈N2 ⌉ ≤ k ≤ j ≤ N), and an orthogonal matrix Q ∈ G, such that z = Qzj,k.

Then, the polynomial de�ned by Lz(x) ≜ Lzj,k(Q
⊺x), where Lzj,k as in (8) satis�es (7). □

3.2. Optimal quadrature rule. Let f∗ be the grid function corresponding to a given function
f . For N ∈ {1, 2, 3, 4}, consider a quadrature rule (Q) with nodes in CSN ,

(Q)

∫
S2
f(x)dσ(x) ≃

∑
x∈CSN

ω(x)f∗(x). (9)

A particular class of rule (Q) deals with �octahedral�, in the sense that they are deduced by
octahedral symmetry from weights speci�ed at the nodes x ∈ TN only. The following theorem
holds.

Theorem 3 (Optimal quadrature rule on low-resolution Cubed Spheres). Let N ∈ {1, 2, 3, 4}.
(i) The octahedral weight ω = ωopt : CSN → (0,∞) given in Table 1 de�nes a quadrature rule
(Qopt) with degree of accuracy 4N − 1, i.e.

∀p ∈ P4N−1,
∫
S2 p(x) dσ =

∑
x∈CSN

ω(x) p(x), (10)

∃p ∈ P4N ,
∫
S2 p(x) dσ ̸=

∑
x∈CSN

ω(x) p(x). (11)

(ii) The rule (Qopt) is the optimal one in the following sense. Any quadrature rule (Q) on CSN
with a weight function ω ̸= ωopt, is less accurate than Qopt, i.e.

∀ω : CSN → R,

(∃x ∈ CSN , ω(x) ̸= ωopt(x)) ⇒
(
∃p ∈ P4N−1,

∫
S2 p(x) dσ ̸=

∑
x∈CSN

ω(x) p(x)
)
. (12)

Proof. First, assume that ω : CSN → R is a weight grid function associated with a quadrature
rule satisfying (10) (exact on P4N−1). We show that, necessarily, ω does possess the octahedral
symmetry and takes the values given in Table 1, fourth column. Fix z ∈ CSN , and apply the
quadrature rule for an elementary Lagrange polynomial Lz ∈ P4N−1 in (7). We obtain

ω(z) =

∫
S2
Lz(x) dσ.

Next, for all Q ∈ G, applying the quadrature rule to Lz(Q
⊺·) yields

ω(Qz) =

∫
S2
Lz(Q

⊺x) dσ =

∫
S2
Lz(y) dσ = ω(z), z ∈ CSN , Q ∈ G.

This proves the octahedral invariance of ω. Assume now (without restriction) that z = zj,k with

⌈N2 ⌉ ≤ k ≤ j ≤ N , and consider the polynomial Lz in (8). We evaluate the integral of Lz in (8)
in the coordinate system (5),

ω(z) =

∫
θ∈[−π

2 ,
π
2 ]

∫
ϕ∈[−π

4 ,
7π
4 ]

Lz(x(θ, ϕ))dϕ cos θdθ.

The inner integrand is a trigonometric polynomial in ϕ with degree smaller or equal to 4N − 1.
Therefore, it is exactly evaluated by the trapezoidal rule with step π

2N . Moreover, Lz(x(θ, ϕ)) = 0
if ϕ ≡ ϕm [π] with m ̸= j, since Lz vanishes on the meridian circle with longitude ϕ = ϕm.
Therefore,

ω(zj,k) =
π

2N

∫ π
2

−π
2

[Lzj,k(x(θ, ϕj)) + Lzj,k(x(θ, ϕj + π))] cos θdθ.

Again, the integrand is a trigonometric polynomial (in θ), with degree at most 4N . Calculating
this integral has been performed using symbolic computation. The values are reported in Table 1,
fourth column.

Conversely, consider the octahedral weight ω in Table 1. The reported values are ω(z) with
z ∈ TN ; they are extended to CSN using octahedral invariance: for every z′ ∈ CSN , ω(z

′) := ω(z),
where z ∈ TN is the unique point in TN such that z′ ∈ O(z). We show the exactness property (10).
The number of properties to verify is reduced according to [13, 17]. Indeed, as a consequence



6 JEAN-BAPTISTE BELLET†, MATTHIEU BRACHET†, AND JEAN-PIERRE CROISILLE‡

N Polynomials vα1 v
β
2 with degree 4α+ 6β ≤ 4N − 1

1 1
2 1, v1, v2
3 1, v1, v2, v

2
1, v1v2

4 1, v1, v2, v
2
1, v1v2, v

3
1, v

2
2, v

2
1v2

Table 2. Polynomials to be considered to insure the exactness of an octahedral
quadrature rule in P4N−1 (v1 and v2 are given in (13)). See [13].

of octahedral symmetry, it is (necessary and) su�cient to show the exactness property only
for those polynomials which are invariant by G [17]. Moreover, any polynomial invariant by G
coincides on the sphere with a polynomial in the variables v1, v2 given by [13],

v1 = x21x
2
2 + x21x

2
3 + x22x

2
3, v2 = x21x

2
2x

2
3. (13)

Therefore, it is su�cient to verify that
∫
S2 p(x)dσ =

∑
x∈CSN

ω(x)p(x) for the list of polynomials
p in Table 2. This veri�cation has been performed using symbolic computation. We have proved
so far that the octahedral weight ω from Table 1 is the only grid function on CSN guarantying
the exactness property (10). To conclude the proof, we show that the degree of accuracy is
exactly 4N − 1, using a counterexample of degree 4N which proves (11). We use the Spherical

Harmonics q = Y −2N
2N (x(θ, ϕ− π

4 )) ∈ Y2N , introduced in [8]. Up to a constant factor, q is given

by (cos θ)2N sin[2N(ϕ − π
4 )]; therefore, q(x) = 0, x ∈ CSN , due to (4). Consider now p ∈ P4N

such that p|S2 = q2 ∈ Y4N . Since p(x) = 0, x ∈ CSN , we have
∑

x∈CSN
ω(x)p(x) = 0, whereas q

is unitary in L2(S2), so
∫
S2 p(x)dσ = 1. □

Remark 4. For N = 1, 2, the number of polynomials to be considered coincides with the number
of weights (|TN |). However, in the case N = 3 (resp. N = 4), there are two additional polyno-
mials in the list in Table (1), namely 5 polynomials (resp. 8 polynomials) compared to |TN | = 3
weights, (resp. |TN | = 6 weights). It is therefore remarkable to reach the degree of accuracy
4N − 1 for N = 3 and N = 4.

3.3. Least squares on CSN with Spherical Harmonics. In [8], a study of the least square
approximation at the nodes of CSN with the space Y2N−1 has been introduced in the general
case N ≥ 1. The treatment of the particular case N ∈ {1, 2, 3, 4} can be completed as follows.

Corollary 5 (Least squares spherical harmonics). Let N ∈ {1, 2, 3, 4}, and let ω be the octahedral
weight in Table 1. The following claims hold true.
(i) The Spherical Harmonics (Y m

n )∗, |m| ≤ n ≤ 2N − 1, de�ne an orthonormal basis of the space
{y∗, y ∈ Y2N−1} for the discrete inner product

⟨f, g⟩ =
∑

x∈CSN

ω(x)f(x)g(x), f, g : CSN → R. (14)

(ii) The linear mapping p ∈ Y2N−1 7→ p∗ is injective.
(iii) For every f : CSN → R, the weighted least squares problem

inf
p∈Y2N−1

∑
x∈CSN

ω(x)(p(x)− f(x))2 (WLS)

has a unique solution, and it is given by

p =
∑

|m|≤n≤2N−1

p̂mn Y m
n , with p̂mn =

∑
x∈CSN

ω(x)f(x)Y m
n (x).

Proof. (i) The symmetric bilinear mapping (14) de�nes an inner product because ω is positive.
For all p, q ∈ Y2N−1, we have pq ∈ Y4N−2, so (10) implies

⟨p, q⟩L2(S2) =

∫
S2
pq dσ =

∑
x∈CSN

ω(x)p(x)q(x) = ⟨p∗, q∗⟩. (15)
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The spherical harmonics Y m
n , |m| ≤ n ≤ 2N − 1, de�ne an orthonormal basis of Y2N−1, for

⟨·, ·⟩L2(S2). The relation above implies that (Y m
n )∗, |m| ≤ n ≤ 2N − 1, de�ne an orthonormal

basis of {y∗, y ∈ Y2N−1}, for ⟨·, ·⟩.
(ii) Let p =

∑
|m|≤n≤2N−1 p̂

m
n Y m

n ∈ Y2N−1. We obtain the expansion of p∗ in the orthonormal

basis (Y m
n )∗, |m| ≤ n ≤ 2N − 1, by restriction to CSN : p∗ =

∑
|m|≤n≤2N−1 p̂

m
n (Y m

n )∗. This

implies p̂mn = ⟨p∗, (Y m
n )∗⟩, |m| ≤ n ≤ 2N − 1, which proves the injectivity1 of p ∈ Y2N−1 7→ p∗.

(iii) Let f : CSN → R and p =
∑

|m|≤n≤2N−1 p̂
m
n Y m

n ∈ Y2N−1. The cost in (WLS) is nothing

else but the squared norm ⟨p∗ − f, p∗ − f⟩. This quantity is minimal if, and only if, p∗ is the
orthogonal projection of f on {y∗, y ∈ Y2N−1} for ⟨·, ·⟩. In the orthonormal basis (Y m

n )∗, |m| ≤
n ≤ 2N − 1, this is equivalent to p̂mn = ⟨f, (Y m

n )∗⟩ =
∑

x∈CSN
ω(x)f(x)Y m

n (x). □

4. Applications and comments

4.1. Case N = 1. In the case N = 1, the weight ω(x) = π
2 is uniform. It simply corresponds

to the area of a face of the octahedron projected on the sphere. It can be related to a Gauss-
ian quadrature rule as follows. The grid CS1 coincides with a longitude-latitude grid, with 4
subdivisions in ϕ ∈ [−π

4 ,
7π
4 ], and 2 Gauss-Legendre nodes in x3 ∈ [−1, 1]:

CS1 =
{
(cosϕ (1− x23)

1/2, sinϕ (1− x23)
1/2, z), (ϕ, x3) ∈ {ϕi, 0 ≤ i ≤ 3} × {− 1√

3
, 1√

3
}
}
.

The uniform weight ω = π
2 on CS1 can be deduced from a trapezoidal rule in ϕ and a Gauss-

Legendre rule in x3:∫
S2
f(x1, x2, x3) dσ =

∫ 1

−1

∫ 7π
4

−π
4

f(cosϕ (1− x23)
1/2, sinϕ (1− x23)

1/2, x3) dϕ dx3

≃ π

2

∑
x3=± 1√

3

3∑
i=0

f(cosϕi (1− x23)
1/2, sinϕi (1− x23)

1/2, x3) =
π

2

∑
x∈CS1

f(x).

This procedure is standard, and the corresponding degree of accuracy (3) is expected; see [2,
Theorem 5.4].

4.2. Comparison with Lebedev's octahedral quadrature rules. In Table 4, we have re-
ported the degree of accuracy of the �rst Lebedev's rules, versus the number of grid nodes,
according to [9,12]. For a given degree of accuracy, the Lebedev's octahedral grid, with the cor-
responding octahedral weight, are designed to integrate polynomials up to the given degree [12].
The shape of the octahedral grid, including the number of grid nodes, is designed such that
the number of unknowns coincides with the number of equations to be imposed, after reduction
based on octahedral symmetry. In general, a nonlinear system of equations must be solved to
obtain the grid. We refer to [12] for tables with degree between 9 and 17, and to [9,14] for source
codes and numerical tables with degree between 3 and 131. Here, our approach is di�erent: the
grid is �xed from the beginning (the Cubed Sphere), and the quadrature weights are directly cal-
culated , by integration of suitable trigonometric polynomials. Octahedral invariance and degree
of accuracy are veri�ed. Therefore, for a given degree of accuracy, the number of nodes of the
Lebedev's grid may be expected to be smaller than the one of the Cubed Sphere. A comparison
of Table 4 and Table 1 con�rms this fact for the degrees 3, 11, 15, but indicates that the number
of grid points remains close from each other. Furthermore, for the degree 7, the two grids have 26
points. After inspection of the two rules, it appears that our rule on CS2 numerically coincides
with the Lebedev's rule of degree 72 (it coincides with the one from [9], up to rounding errors).

1This corrects an argument in [8] where it was erroneoulsy claimed that, for N ∈ {3, 4}, any meridian circle
ϕ ≡ ϕi [π] contains 4N points from CSN .

2We did not succeed in �nding a reference with the analytical formula for the Lebedev's grid with degree 7.
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i fi(x, y, z) Ii =
∫
S2 fi(x, y, z) dσ Ref.

1 exp(x) 14.7680137457653 · · · [2, 6, 10]

2 3
4 exp[−

(9x−2)2

4 − (9y−2)2

4 − (9z−2)2

4 ] 6.6961822200736179523 · · · [1, 3, 6, 11,15]

+ 3
4 exp[−

(9x+1)2

49 − 9y+1
10 − 9z+1

10 ]

+ 1
2 exp[−

(9x−7)2

4 − (9y−3)2

4 − (9z−5)2

4 ]
− 1

5 exp[−(9x− 4)2 − (9y − 7)2 − (9z − 5)2]
3 cos(3 arccos z)1(3 arccos z ≤ π

2 )
π
8 [6]

4 1(z ≥ 1
2 ) π [6]

Table 3. Test functions and exact integration values.

4.3. Comparison with other interpolatory rules on the Cubed Sphere. In [6], a family
of quadrature rules based on the Cubed Sphere has been introduced. The approach is based
on Lagrange interpolation in a particular space of Spherical Harmonics. The considered space
has been designed to guaranty existence and uniqueness of an interpolating function, as in [7].
Practically, this space is identi�ed as a subspace of Y3N using numerical linear algebra. The cor-
responding quadrature weights, computed in double precision, are available at the url indicated
in [6].

The numerical results in [6, Table 7] show that the numerical degree of accuracy is 4N −
1 for 1 ≤ N ≤ 4. This is surprising because the corresponding quadrature rule has been
designed by interpolation in Y3N ⊂ Y4N−1. Also, these numerical observations, combined with
Theorem 3.(ii), suggest that the numerical weights from [6] should coincide with the analytical
weights from Table 1, up to rounding errors.

To assess that latter point, the relative di�erence between the weights from [6], and the weights
from Table 1 has been computed in double precision. The obtained maximum relative di�erence
over all weights has been found around 1.9·10−15. This assesses that with the numerical approach
in [6,7], one actually evaluates the optimal quadrature weights in Table 1 (up to rounding errors).

4.4. Integration errors of test functions. We evaluate the integrals in Table 3, using the rule
from Table 1, and Lebedev's rules in [9, 12]. The series of considered functions is representative
of various smoothness properties, ranging from very smooth (f1), to discontinuous (f4), and has
already been used to test quadrature rules (references in the fourth column in Table 3). The
computation has been performed in double precision.

Table 4, reports the relative errors

ηL = |IL − Ii|/Ii, ηCS = |ICS − Ii|/Ii, 1 ≤ i ≤ 4, (16)

corresponding to the integration of fi by Lebedev's rule, resp. the rule in Table 1. Moreover,
we compute similar errors after several random orthogonal transformations of the grids, giving
an error independent of the axes position. For each matrix Q ∈ R3×3 in a set of 1000 random
orthogonal matrices, we compute the observed relative errors

ηL(Q) = |IL(Q)− Ii|/Ii, ηCS(Q) = |ICS(Q)− Ii|/Ii, 1 ≤ i ≤ 4, (17)

corresponding to the integration of the �rotated� function fi(Q·). The maximum errors have
been reported in Table 4, and displayed in Fig. 4. As a result, the weight from Table 1 permits
to compute the integrals from Table 3, with an observed accuracy that is relatively close to the
one of Lebedev's rule.

5. Summary

In this paper, we provide a series of analytical formulas for the optimal quadrature rule on
low-resolution Cubed Spheres, with respect to the degree of accuracy. The rule uses the 6N2+2
nodes of CSN . The degree of accuracy is 4N − 1, 1 ≤ N ≤ 4. A direct computation, based on
the speci�c geometrical structure of the considered grids. Despite the simplicity of the approach,
the obtained rules are quite close to the usual rules such as the Lebedev's ones. In addition, we
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Degree of accuracy 3 5 7 9 11 13 15 17
Size of the Lebedev's grid 6 14 26 38 50 74 86 110
Size of the Cubed Sphere 8 26 56 98

|IL − I1|/I1 5.0e-03 1.6e-05 1.4e-07 2.3e-10 1.1e-13 5.7e-15 2.5e-14 2.8e-15
|ICS − I1|/I1 3.3e-03 1.4e-07 5.7e-13 6.0e-16

maxQ |IL(Q)− I1|/I1 5.0e-03 2.7e-05 1.4e-07 3.5e-10 6.5e-13 5.8e-15 2.5e-14 2.8e-15
maxQ |ICS(Q)− I1|/I1 3.3e-03 1.4e-07 5.7e-13 8.4e-16

|IL − I2|/I2 1.6e-01 1.2e-02 2.2e-03 4.6e-03 3.1e-03 2.3e-03 1.2e-04 2.6e-04
|ICS − I2|/I2 1.2e-01 2.2e-03 1.4e-03 3.3e-04

maxQ |IL(Q)− I2|/I2 1.8e-01 7.3e-02 3.4e-02 1.8e-02 1.1e-02 1.1e-02 4.1e-03 2.6e-03
maxQ |ICS(Q)− I2|/I2 1.5e-01 3.4e-02 8.2e-03 3.4e-03

|IL − I3|/I3 4.3e+00 1.1e+00 5.2e-01 1.9e-01 4.3e-02 2.0e-01 1.4e-02 4.9e-02
|ICS − I3|/I3 1.0e+00 5.2e-01 2.2e-01 5.1e-02

maxQ |IL(Q)− I3|/I3 4.3e+00 1.4e+00 7.2e-01 2.1e-01 2.8e-01 2.7e-01 8.4e-02 9.5e-02
maxQ |ICS(Q)− I3|/I3 3.0e+00 7.2e-01 2.5e-01 1.1e-01

|IL − I4|/I4 3.3e-01 4.7e-01 3.1e-01 9.5e-03 7.2e-02 5.2e-01 1.6e-02 7.0e-02
|ICS − I4|/I4 1.0e+00 3.1e-01 9.1e-02 2.1e-02

maxQ |IL(Q)− I4|/I4 1.0e+00 4.7e-01 3.1e-01 2.5e-01 2.3e-01 5.2e-01 1.6e-01 1.2e-01
maxQ |ICS(Q)− I4|/I4 1.0e+00 3.1e-01 1.8e-01 1.4e-01

Table 4. Accuracy of the rule from Table 1, compared with the accuracy of the
Lebedev's rule from [9, 12]. In the top rows, the grid sizes are compared, versus
the degree of accuracy. The next rows indicate the relative quadrature errors
|I−Ii|/Ii for the test functions fi from Table 3; Ii =

∫
fi denotes the exact value,

I = IL is computed using the Lebedev's rule, I = ICS is computed using Table 1.
The maximum relative errors, over 1000 random orthogonal transformations of
the grids are also reported; the matrix Q ∈ R3×3 browses a set of 1000 random
orthogonal matrices, and IL(Q), ICS(Q), correspond to the quadrature rules ap-
plied on the �rotated� functions f(Q·).

have noticed a surprising extra accuracy in the case N = 3, 4, since in this case, the number of
relations (or equations) satis�ed by the weights is larger than the number of weights.

A simple open question (for N ∈ {2, 3, 4}) is to exhibit a polygonal tiling of the sphere with
polygons areas given by the obtained weights; the goal being to �nd a mesh as �simple� as
possible. Answering such a question may require to solve systems of non-linear equations.

Another still open question concerns quadrature rules on the grid CSN , N ≥ 5: what is the
optimal quadrature rule, and what is its degree of accuracy ? Unfortunately, we cannot directly
extend the method of the present work, since in that case, CSN is no longer included in the set
MN of meridian circles. A hope is that a natural tiling of CSN , N ≤ 4, based on the optimal
weights, suggests a tiling principle of CSN , N ≥ 5, whose areas give an accurate rule.

6. Appendix

We provide a Matlab code which implements the octahedral quadrature rules from Table 1,∫
S2
f dσ ≃

∑
(x,y,z)∈TN

ωopt(x, y, z)
∑

(x′,y′,z′)∈O(x,y,z)

f(x′, y′, z′).

The code measures also the accuracy, with f a rotated version of f1 from Table 3.

%%%%function and its integral

f=@(x,y,z)exp(1/sqrt(14)*(x+2*y+3*z));%rotation of (x,y,z)->exp(x)

Iexact=2*pi*(exp(1)-exp(-1));%exact value of the integral int_{S^2} f ds



10 JEAN-BAPTISTE BELLET†, MATTHIEU BRACHET†, AND JEAN-PIERRE CROISILLE‡

Figure 4. Accuracy of the rule from Table 1, compared with the accuracy of
the Lebedev's rule from [9,12], for the test functions from Table 3. The displayed
errors correspond to the maximum relative quadrature errors over 1000 random
orthogonal transformations of the grids, from Table 4.

%%%%Optimal quadrature rule on CS1, and evaluation of the relative error

N=1

u=1/sqrt(3);w=pi/2;%vertex of the cube

I=w*(f(u,u,u)+f(-u,-u,-u)+...

+f(-u,u,u)+f(u,-u,u)+f(u,u,-u)+f(u,-u,-u)+f(-u,u,-u)+f(-u,-u,u))

(I-Iexact)/Iexact %result: 8.2233e-04

%%%%Optimal quadrature rule on CS2, and evaluation of the relative error

N=2

u1=1/sqrt(3);w1=9*pi/70;%vertex of the cube

u2=1/sqrt(2);w2=16*pi/105;%center of an edge

w3=4*pi/21;%face center

I=w1*(f(u1,u1,u1)+f(-u1,-u1,-u1)+f(-u1,u1,u1)+f(u1,-u1,u1)...

+f(u1,u1,-u1)+f(u1,-u1,-u1)+f(-u1,u1,-u1)+f(-u1,-u1,u1))...

+w2*(f(u2,u2,0)+f(u2,0,u2)+f(0,u2,u2)+f(-u2,u2,0)...

+f(-u2,0,u2)+f(0,-u2,u2)+f(u2,-u2,0)+f(u2,0,-u2)...

+f(0,u2,-u2)+f(-u2,-u2,0)+f(-u2,0,-u2)+f(0,-u2,-u2))...

+w3*(f(1,0,0)+f(0,1,0)+f(0,0,1)+f(-1,0,0)+f(0,-1,0)+f(0,0,-1))

(I-Iexact)/Iexact %result: -1.6486e-08
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%%%%Optimal quadrature rule on CS3, and evaluation of the relative error

N=3

u1=1/sqrt(3);w1=9*pi/140;%vertex of the cube

t=2-sqrt(3);

u4=1/sqrt(2+t^2);v4=t*u4;w4=61*pi/840-3*pi*sqrt(3)/560;%edge of the cube

u5=1/sqrt(1+2*t^2);v5=t*u5;w5=61*pi/840+3*pi*sqrt(3)/560;%diagonal of a face

I=w1*(f(u1,u1,u1)+f(-u1,-u1,-u1)+f(-u1,u1,u1)+f(u1,-u1,u1)...

+f(u1,u1,-u1)+f(u1,-u1,-u1)+f(-u1,u1,-u1)+f(-u1,-u1,u1))...

+w4*(f(u4,u4,v4)+f(u4,v4,u4)+f(v4,u4,u4)+f(u4,u4,-v4)+f(u4,-v4,u4)...

+f(-v4,u4,u4)+f(-u4,u4,v4)+f(-u4,v4,u4)+f(v4,-u4,u4)+f(-u4,u4,-v4)...

+f(-u4,-v4,u4)+f(-v4,-u4,u4)+f(u4,-u4,v4)+f(u4,v4,-u4)+f(v4,u4,-u4)...

+f(u4,-u4,-v4)+f(u4,-v4,-u4)+f(-v4,u4,-u4)+f(-u4,-u4,v4)+f(-u4,v4,-u4)...

+f(v4,-u4,-u4)+f(-u4,-u4,-v4)+f(-u4,-v4,-u4)+f(-v4,-u4,-u4))...

+w5*(f(u5,v5,v5)+f(v5,u5,v5)+f(v5,v5,u5)+f(-u5,v5,v5)+f(v5,-u5,v5)...

+f(v5,v5,-u5)+f(u5,-v5,v5)+f(-v5,u5,v5)+f(-v5,v5,u5)+f(-u5,-v5,v5)...

+f(-v5,-u5,v5)+f(-v5,v5,-u5)+f(u5,v5,-v5)+f(v5,u5,-v5)+f(v5,-v5,u5)...

+f(-u5,v5,-v5)+f(v5,-u5,-v5)+f(v5,-v5,-u5)+f(u5,-v5,-v5)+f(-v5,u5,-v5)...

+f(-v5,-v5,u5)+f(-u5,-v5,-v5)+f(-v5,-u5,-v5)+f(-v5,-v5,-u5))

(I-Iexact)/Iexact %result: -1.2762e-13

%%%%Optimal quadrature rule on CS4, and evaluation of the relative error

N=4

u1=1/sqrt(3);w1=729*pi/20020;%vertex of the cube

u2=1/sqrt(2);w2=512*pi/15015;%center of an edge

w3=736*pi/15015;%center of a face

s=sqrt(2)-1;

u4=1/sqrt(2+s^2);v4=s*u4;w4=2053*pi/51480-183*pi*sqrt(2)/80080;%edge

u5=1/sqrt(1+2*s^2);v5=s*u5;w5=2053*pi/51480+183*pi*sqrt(2)/80080;%diagonal

u6=1/sqrt(1+s^2);v6=s*u6;w6=2048*pi/45045;%equator

I=w1*(f(u1,u1,u1)+f(-u1,-u1,-u1)+f(-u1,u1,u1)+f(u1,-u1,u1)...

+f(u1,u1,-u1)+f(u1,-u1,-u1)+f(-u1,u1,-u1)+f(-u1,-u1,u1))...

+w2*(f(u2,u2,0)+f(u2,0,u2)+f(0,u2,u2)+f(-u2,u2,0)...

+f(-u2,0,u2)+f(0,-u2,u2)+f(u2,-u2,0)+f(u2,0,-u2)...

+f(0,u2,-u2)+f(-u2,-u2,0)+f(-u2,0,-u2)+f(0,-u2,-u2))+...

+w3*(f(1,0,0)+f(0,1,0)+f(0,0,1)+f(-1,0,0)+f(0,-1,0)+f(0,0,-1))...

+w4*(f(u4,u4,v4)+f(u4,v4,u4)+f(v4,u4,u4)+f(u4,u4,-v4)+f(u4,-v4,u4)...

+f(-v4,u4,u4)+f(-u4,u4,v4)+f(-u4,v4,u4)+f(v4,-u4,u4)+f(-u4,u4,-v4)...

+f(-u4,-v4,u4)+f(-v4,-u4,u4)+f(u4,-u4,v4)+f(u4,v4,-u4)+f(v4,u4,-u4)...

+f(u4,-u4,-v4)+f(u4,-v4,-u4)+f(-v4,u4,-u4)+f(-u4,-u4,v4)+f(-u4,v4,-u4)...

+f(v4,-u4,-u4)+f(-u4,-u4,-v4)+f(-u4,-v4,-u4)+f(-v4,-u4,-u4))...

+w5*(f(u5,v5,v5)+f(v5,u5,v5)+f(v5,v5,u5)+f(-u5,v5,v5)+f(v5,-u5,v5)...

+f(v5,v5,-u5)+f(u5,-v5,v5)+f(-v5,u5,v5)+f(-v5,v5,u5)+f(-u5,-v5,v5)...

+f(-v5,-u5,v5)+f(-v5,v5,-u5)+f(u5,v5,-v5)+f(v5,u5,-v5)+f(v5,-v5,u5)...

+f(-u5,v5,-v5)+f(v5,-u5,-v5)+f(v5,-v5,-u5)+f(u5,-v5,-v5)+f(-v5,u5,-v5)...

+f(-v5,-v5,u5)+f(-u5,-v5,-v5)+f(-v5,-u5,-v5)+f(-v5,-v5,-u5))...

+w6*(f(u6,v6,0)+f(u6,0,v6)+f(0,u6,v6)+f(-u6,-v6,0)+f(-u6,0,-v6)...

+f(0,-u6,-v6)+f(-u6,v6,0)+f(-u6,0,v6)+f(0,-u6,v6)+f(u6,-v6,0)...

+f(u6,0,-v6)+f(0,u6,-v6)+f(v6,u6,0)+f(v6,0,u6)+f(0,v6,u6)...

+f(-v6,-u6,0)+f(-v6,0,-u6)+f(0,-v6,-u6)+f(-v6,u6,0)+f(-v6,0,u6)...

+f(0,-v6,u6)+f(v6,-u6,0)+f(v6,0,-u6)+f(0,v6,-u6))

(I-Iexact)/Iexact %result: 0
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