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Abstract. A discrete fourth-order elliptic theory on a one-dimensional inter-

val is constructed. It is based on “Hermitian derivatives” and compact higher-

order finite difference operators and is shown to possess the analogs of the stan-
dard elliptic theory such as coercivity and compactness. The discrete version of

the fourth-order Sturm-Liouville problem
(

d
dx

)4
u+ d

dx

(
A(x) d

dx
u
)

+B(x)u =

f on a real interval is studied in terms of the functional calculus. The result-

ing (compact) finite difference scheme constitutes a scale of finite-dimensional
Sturm-Liouville problems. A major difficulty is the presence of boundaries, in

contrast to periodic problems (and analogous to boundary layers in Navier-

Stokes simulations). Convergence of the finite-dimensional solutions to the
continuous one is proved in the general case, and optimal (O(h4)) convergence

rates are obtained in the constant coefficient case. Numerical examples are
given, demonstrating the optimal rate even in highly oscillatory cases.

1. INTRODUCTION

In this paper we expound a discrete elliptic theory in the context of fourth-order
Sturm-Liouville problems on the interval Ω = [0, 1]. The discrete finite-difference
operators are compact, and are derived from the fundamental concept of the Her-
mitian derivative. It should be pointed out that the elliptic finite-difference
methodology is entirely developed in the discrete framework, independently of the
classical (continuous) elliptic theory. In particular, the concepts of classical elliptic
theory, such as coercivity, compactness (Rellich’s theorem) and apriori estimates
have their equivalents in the discrete case .

One can compare the present study to the development of finite-dimensional
finite element methods for elliptic problems [5].

Once the discrete structure is established, it can be applied towards the approx-
imation of the fourth-order boundary value problem on the interval. The elliptic
tools enable us to get “optimal” error estimates, as will be further explained below
in this Introduction.

Our approach is closely related to recently introduced compact schemes in the
treatment of 2D Navier-Stokes equations [3], where the pure streamfunction for-
mulation involves fourth-order derivatives.
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Naturally, the development of the elliptic discrete methodology involves some
lengthy proofs. The reader who is primarily interested in the approximation algo-
rithm can conveniently skip the proofs, as indicated in the “box” at the end of this
Introduction.

Turning to the approximation issue, consider the equation

(1.1)

LA,Bu =
( d
dx

)4

u+A(x)
( d
dx

)2

u+A′(x)
( d
dx

)
u+B(x)u = f, x ∈ Ω = [0, 1],

where A(x), B(x) are real functions, A(x) ∈ C1(Ω) and B(x) ∈ C(Ω).
The equation is supplemented with homogeneous boundary conditions

(1.2) u(0) =
d

dx
u(0) = u(1) =

d

dx
u(1) = 0.

As is well-known, non-homogeneous boundary conditions are accommodated by a
modification of the right-hand side function f(x).

The case of a second-order equation is generally known as the Sturm-Liouville
problem. It has been extensively studied, both from the theoretical point-of-
view [7], dealing with issues of spectral structure, behavior of eigenfunctions and
their zeros and so on, as well as the numerical point-of-view [15], dealing with dis-
crete aspects of these topics. We mention in particular the very recent paper [19]
(and references therein), where group-theoretic tools are used for the discrete ap-
proximation of eigenvalues and eigenfunctions.

Equations such as (1.1), subject to boundary conditions at the two endpoints, are
usually referred to as higher order Sturm-Liouville problems. Such problems
appear in various applications, such as elasticity theory, streamfunction formulation
of Navier-Stokes equations or wave propagation problems with high dispersivity. If
restricted to the self-adjoint case these are actually one-dimensional elliptic bound-
ary value problems, for which the basic theory is well-established. In Section 2 we
recall some basic facts that are relevant to the present paper.

The “heart of the paper”, the elliptic discrete analysis, is developed in Section 3.
It is designed not only to the regular interior elliptic properties (such as coercivity),
but also to the handling of boundary values. This additional aspect complicates
the treatment, but it is certainly necessary if approximation of boundary value
problems is desired. Here we encounter phenomena of “discrete boundary layer”,
such as lower regularity and the fact that certain operators do not commute.

In the context of elliptic boundary value problems, in any space dimension, a
basic issue is the continuous dependence of the solutions on the data. For
example, how solutions vary as the right-hand side function f is perturbed. A
fundamental tool is the compactness of the solution operator. More specifically,
it is the compact embedding (Rellich’s theorem) of the Sobolev space Hk(Ω), k ≥ 1
in L2(Ω) [9, Chapter 5]. Roughly speaking, it is first established that the inverse
of the operator (if it has no eigenvalue at zero) is bounded (“stability”). Then the
compactness property is used in order to show that, under continuous variation of
the data , the corresponding solutions (already shown to belong to a bounded set)
vary continuously.

In a finite-dimensional space every linear operator is compact. The discrete
approximation methodology is based on a sequence of finite-dimensional spaces with
increasing dimension. A nice description of the situation is given in [24] (in the
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context of computing discrete approximation of spectra): “A suitable error analysis
must overcome the difficulty that the solutions are in an infinite dimensional space,
whereas the approximating solutions are finite dimensional vectors”.

An essential feature of our calculus consists of getting operator bounds that
are independent of the mesh size. It is in this context that we need to define the
concept of compactness in an increasing sequence of finite-dimensional
spaces. This concept is introduced in Theorem 3.7.

The discrete functional calculus leads to a finite difference scheme for the ap-
proximation of (1.1). In general terms, the scheme produces a sequence of discrete
(namely, finitely valued) solutions. As the underlying mesh is refined, it is expected
that the discrete solutions “converge” to the analytical one. Since these are all
finite-dimensional solutions (with increasing dimension as the mesh is refined)–one
needs to clarify the meaning of such convergence.

It turns out that Theorem 3.7, as in the analytical case, is the cornerstone of the
convergence proof, which is expounded in Section 4; we show that, for sufficiently
small mesh size h, the finite-difference scheme (4.1) can be solved (namely, the
discrete operator is invertible) and indeed the resulting solutions converge to the
solution of the continuous equation as h→ 0.

Following the general convergence proof, we consider in Section 5 quantitative
error estimates for the discrete solutions, in the constant coefficient case (A(x) ≡
a, B(x) ≡ b). These are estimates of the deviation of the discrete solution from
the exact one. The latter is represented by its restriction to the grid and the es-
timates are expressed in terms of powers of h, the mesh size. The treatment here
is a crescendo process. We first establish the general Theorem 5.2; it is the ex-
act discrete elliptic analog to the continuous case, estimating the solution and its
derivatives in terms of the right-hand side. When dealing with periodic bound-
ary conditions, this would have been the “end of the story”, leading automatically
to optimal convergence rates. However, the presence of boundary conditions (1.2)
entails deterioration of the truncation error near the boundary. This in turn allows
only a “suboptimal” estimate in Theorem 5.3. Remarkably, the discrete elliptic
properties of the operator enable us to recover, in Theorem 5.7, an optimal O(h4)
estimate (but just for the error) . In Corollary 5.9 we obtain estimates for the
(discrete) derivatives of the error. As can be expected, such estimates are not quite
O(h4), but they are nonetheless significant as they ensure that the discrete approx-
imations are indeed close to the analytic solutions and do not develop spurious or
oscillatory behavior.

In Section 6 we present numerical test cases that indeed corroborate our claim
of optimal error estimates. This is true even for highly oscillatory solutions, such
as Equation (6.9) , with variable coefficients given by (6.10).

Some of these calculations were carried out in the M.Sc. thesis of Ron Katzir,
supervised by M. Ben-Artzi.

JUST THE ALGORITHM: The reader who is interested primar-
ily in the numerical algorithm can read only Subsection 3.1
for the definitions of the discrete operators
and then Equation (4.1) for the discrete algorithm.

1.1. Existing literature on approximations to fourth-order boundary value
problems. There is a vast literature on the numerical resolution of elliptic partial
differential equations (finite-elements, finite differences, spectral methods...), and
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it is of course impossible for us (and beyond the scope of the paper) to give a
reasonable survey. We mention the recent book [16], where Chapter 2 is devoted
to elliptic problems. More specifically, Section 2.7 there deals with error analysis
of fourth-order equations in the two-dimensional square, using Sobolev norms and
energy methods.

Numerical studies of the biharmonic equation in a square are more relevant to
our interest here, especially when they deal with issues of high-order accuracy. We
refer to [1] (cubic splines collocation), [6] (finite elements) and references therein.

Finally, we focus on the one-dimensional case, that is the topic of the present
paper. Generally speaking, it is fair to state that the numerical treatment for higher
order Sturm-Liouville problems has attracted little attention in the literature, when
compared to the classical second-order problem. The papers [13, 18, 20, 25] obtain
approximate solutions to the fourth-order boundary value problem by Galerkin
methods (based on B-splines). The papers [17, 23] use quintic splines but claim to
get only second-order convergence.

We note that in all the above papers, the equation considered was y(4)(x) +
g(x)y(x) = f(x), and in particular the second-order derivative y′′ is missing.

Roughly speaking, studies of this problem are motivated, for the most part, by
either one of the two following topics (that are interrelated).

• Determination of eigenvalues of the biharmonic operator and elliptic per-
turbations thereof [4, 6, 12, 21, 26] and references therein.
• Convergence analysis of discrete schemes for the approximation of time evo-

lution of PDE’s of mathematical physics, involving the biharmonic opera-
tor as the principal spatial part. In this category we have two-dimensional
elasticity theory and the two-dimensional Navier-Stokes system in stream-
function formulation.

Even though our convergence analysis is time-independent and confined
to a one-dimensional interval, it is inspired by methods used in [2, 10, 14],
invoking discrete elliptic tools such as coercivity and compact embedding
(Rellich’s theorem).

2. THE FOURTH-ORDER STURM-LIOUVILLE PROBLEM ON AN
INTERVAL

The basic aspects of the general theory (and in fact, for elliptic operators with
constant coefficients in smooth bounded domains in any dimension) are well known [8].
We briefly recall those that are relevant to the present study, where the operator
LA,B (1.1) is defined on the closed interval Ω = [0, 1].

(1) The operator LA,B defined initially on C∞0 (0, 1) functions can be extended
as a self-adjoint operator in H4(Ω), the Sobolev space of functions having
derivatives (in the sense of distributions) up to fourth-order in L2(Ω).

Its domain in this space (reflecting the homogeneous boundary condi-
tions (1.2)) is H4 ∩H2

0 , where H2
0 (Ω) is the completion of C∞0 (0, 1) in the

H2 norm.

(2) The operator
(
d
dx

)4

(obtained from LA,B when A = B = 0) is positive with

compact resolvent
(
d
dx

)−4

. Therefore its spectrum consists of an increasing
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sequence of positive eigenvalues, which we designate as

{0 < λ1 ≤ λ2 ≤ ... ≤ λk...} .

(3) The lower order part A(x)
(
d
dx

)2

+ A′(x)
(
d
dx

)
+ B(x) of LA,B is compact

with respect to
(
d
dx

)4

, hence the spectrum Σ(LA,B) of LA,B consists also

of an increasing sequence of real eigenvalues of finite multiplicity.

SPECTRAL ASSUMPTION. We assume that

(2.1) 0 /∈ Σ(LA,B).

(2.2) NOTE: in this case L−1
A,B is a compact operator on L2(Ω).

3. DISCRETE FUNCTIONAL CALCULUS

3.1. Basic setup and definition of the discrete operators. We equip the
interval Ω = [0, 1] with a uniform grid

xj = jh, 0 ≤ j ≤ N, h =
1

N
.

The approximation is carried out by grid functions v defined on {xj , 0 ≤ j ≤ N} .
The space of these grid functions is denoted by l2h. For their components we use
either vj or v(xj).

For every smooth function f(x) we define its associated grid function

(3.1) f∗j = f(xj), 0 ≤ j ≤ N.

The discrete l2h scalar product is defined by

(v,w)h = h

N∑
j=0

vjwj ,

and the corresponding norm is

(3.2) |v|2h = h

N∑
j=0

v2
j .

For linear operators A : l2h → l2h we use |A|h to denote the operator norm.
The discrete sup-norm is

(3.3) |v|∞ = max
0≤j≤N

{|vj |} .

The discrete homogeneous space of grid functions is defined by

l2h,0 = {v, v0 = vN = 0} .

Given v ∈ l2h,0 we introduce the basic (central) finite difference operators

(3.4)
(δxv)j =

1

2h
(vj+1 − vj−1), 1 ≤ j ≤ N − 1,

(δ2
xv)j =

1

h2
(vj+1 − 2vj + vj−1), 1 ≤ j ≤ N − 1,

The cornerstone of our approach to finite difference operators is the introduction
of the Hermitian derivative of v ∈ l2h,0, that will replace δx. It will serve not only
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in approximating (to fourth-order of accuracy) first-order derivatives, but also as a
fundamental building block in the construction of finite difference approximations
to higher-order derivatives.

First, we introduce the “Simpson operator”

(3.5) (σxv)j =
1

6
vj−1 +

2

3
vj +

1

6
vj+1, 1 ≤ j ≤ N − 1.

Note the operator relation (valid in l2h,0)

(3.6) σx = I +
h2

6
δ2
x,

so that σx is an “approximation to identity” in the following sense.
Let ψ ∈ C∞0 (Ω), then

(3.7) |(σx − I)ψ∗|∞ ≤ Ch2‖ψ′′‖L∞(Ω),

which yields

(3.8) |(σx − I)ψ∗|h ≤ Ch2‖ψ′′‖L∞(Ω).

In the above estimates the constant C > 0 is independent of h, ψ.
The Hermitian derivative vx is now defined by

(3.9) (σxvx)j = (δxv)j , 1 ≤ j ≤ N − 1.

Remark 3.1. In the definition (3.9), the values of (vx)j , j = 0, N, need to be
provided, in order to make sense of the left-hand side (for j = 1, N −1). If not oth-
erwise specified, we shall henceforth assume that, in accordance with the boundary
condition (1.2), vx ∈ l2h,0, namely

(vx)0 = (vx)N = 0.

In particular, the linear correspondence l2h,0 3 v→ vx ∈ l2h,0 is well defined, but not
onto, since δx has a non-trivial kernel.

We next introduce a fourth-order replacement to the operator δ2
x (see [10, Equa-

tion (15)], [3, Equation (10.50)(c)]),

(3.10) (δ̃2
xv)j = 2(δ2

xv)j − (δxvx)j , 1 ≤ j ≤ N − 1.

The biharmonic discrete operator is given by (for v, vx ∈ l2h,0),

(3.11) δ4
xv =

12

h2
[δxvx − δ2

xv].

Note that, in accordance with Remark 3.1 the operator δ̃2
x is defined on grid func-

tions v ∈ l2h,0, such that also vx ∈ l2h,0.
The connection between the two difference operators for the second-order deriv-

ative is given by

(3.12) −δ̃x
2

= −δ2
x +

h2

12
δ4
x.

Remark 3.2. Clearly the operators δx, δ
2
x, δ

4
x depend on h, but for notational sim-

plicity this dependence is not explicitly indicated.
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The fact that the biharmonic discrete operator δ4
x is positive (in particular sym-

metric) is proved in [3, Lemmas 10.9, 10.10]. Therefore its inverse
(
δ4
x

)−1

is also

positive.
A fundamental tool (analogous to classical elliptic theory) is the coercivity prop-

erty (with C > 0 independent of h) [3, Propositions 10.11,10.13],

(3.13) (δ4
xz, z)h ≥ C(|z|2h + |δ2

xz|2h + |δxzx|2h),

valid for any grid function z ∈ l2h,0 such that also zx ∈ l2h,0.

3.2. Uniform boundedness of the discrete operators. We first show that ,
in “ operator sense”, the second-order operator δ2

x is comparable (independently of

h > 0) to (δ4
x)

1
2 .

Lemma 3.3. The operators
(
δ4
x

)− 1
2

δ2
x and δ2

x

(
δ4
x

)− 1
2

are bounded in l2h,0, with

bounds that are independent of h.

Proof. We use the coercivity property (3.13) with z =
(
δ4
x

)− 1
2

w, and obtain

(3.14)
((
δ4
x

) 1
2

w,
(
δ4
x

)− 1
2

w
)
h
≥ C

∣∣∣δ2
x

(
δ4
x

)− 1
2

w
∣∣∣2
h
.

The operator δ2
x

(
δ4
x

)− 1
2

is therefore bounded, with a bound that is independent

of h. The same is true (with the same bound, by a well-known fact about norms of

adjoints) for its adjoint, namely,
(
δ4
x

)− 1
2

δ2
x. �

In the sequel we shall find it useful to use slightly different (and in fact weaker)
boundedness facts (again uniform with respect to h), that are listed in the following
proposition .

Proposition 3.4. The operators (δ4
x)−1, −

(
δ4
x

)−1

δ̃2
x and −δ̃2

x

(
δ4
x

)−1

are bounded

in l2h,0, with bounds that are independent of h.

Proof. The boundedness of
(
δ4
x

)−1

follows directly from the coercivity property (3.13),

by an obvious application of the Cauchy-Schwarz inequality.
In view of (3.12),

(3.15)
−
(
δ4
x

)−1

δ̃2
x = −

(
δ4
x

)−1

δ2
x +

h2

12

(
δ4
x

)−1

δ4
x

= −
(
δ4
x

)−1

δ2
x +

h2

12
I.

It therefore suffices to prove the boundedness of
(
δ4
x

)−1

δ2
x. But this simply fol-

lows from Lemma 3.3 and(
δ4
x

)−1

δ2
x =

(
δ4
x

)− 1
2
(
δ4
x

)− 1
2

δ2
x.

�
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Remark 3.5. We can actually get explicit bounds for the operators in Proposi-
tion 3.4 as follows.

Let z, zx ∈ l2h,0. The discrete Poincaré inequality [3, Equation (9.37)] yields

(3.16) |z|2h ≤ |δ2
xz|2h,

and from [3, Proposition 10.13] we have

(3.17) |δ2
xz|2h ≤

8

3
(δ4
xz, z)h.

In view of the Cauchy-Schwarz inequality the second estimate implies

|δ2
xz|2h ≤

8

3
|δ4
xz|h|z|h.

and combined with (3.16)

(3.18) |z|h ≤
8

3
|δ4
xz|h.

Also, taking z = (δ4
x)−1w in (3.17) we get

(3.19)
∣∣∣δ2
x(δ4

x)−1w
∣∣∣2
h
≤ 8

3

(
w, (δ4

x)−1w
)
h
≤
(8

3

)2

|w|2h.

In conjunction with (3.12) this estimate entails

(3.20)
∣∣∣δ̃2
x(δ4

x)−1w
∣∣∣
h
≤
(8

3
+
h2

12

)
|w|h.

The adjoint operator (δ4
x)−1δ̃2

x has the same bound.

3.3. Compactness-the discrete version of Rellich’s theorem. In (2.2) we
noted the compactness of the inverse L−1

A,B . The compactness of the inverse of an

elliptic operator is equivalent (by domain considerations) to the compact embedding
of the Sobolev space Hs, s > 0 in L2. This is the celebrated Rellich theorem [9,
Chapter 5.7], which is the cornerstone of the elliptic theory. Its proof requires
several tools (for example, in a popular version of the proof, the use of Fourier
transform and the Arzela-Ascoli theorem).

In the discrete framework we do not have some of the aforementioned analytical
tools. Yet we can ask ourselves the following question.

QUESTION: Is there a suitable “compactness′′ property of the inverse(
δ4
x

)−1

?

Of course, if we just consider a fixed h > 0 such a question is meaningless since
the underlying space is finite dimensional. However , we can provide a meaningful
answer if all values of h > 0 are considered. In some sense, the compactness
property is related to an “increasing sequence of finite-dimensional spaces”. The
proof is, understandably, quite long.

We first introduce some notation, basically relating grid functions to functions
defined on the interval Ω = [0, 1] (see [3, Section 10.2]):

For a grid function z ∈ l2h,0 we define its associated piecewise linear continuous
function by
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Definition 3.6.

zh(x) =

{
linear in the interval Ki+ 1

2
= (xi, xi+1), 0 ≤ i ≤ N − 1,

zi, x = xi, 0 ≤ i ≤ N.

Theorem 3.7. [The discrete Rellich theorem] Let {0 < N1 < N2 < ...Nk < ...}
be an increasing sequence of integers and denote hk = 1

Nk
, k = 1, 2, ... Let

{
v(k) ∈ l2hk,0

, k = 1, 2, ...
}

be a bounded sequence of vectors so that

(3.21) sup
{
|v(k)|hk

, k = 1, 2, ...
}
<∞,

and let {
g(k) =

(
δ4
x

)−1

(v(k)), k = 1, 2, ...

}
.

Let {ghk
, vhk

}∞k=1 be the piecewise linear continuous functions in Ω = [0, 1] cor-

responding to
{
g(k), v(k)

}∞
k=1

, respectively (Definition 3.6).

In addition, let
{
g

(k)
x

}∞
k=1

be the sequence of Hermitian derivatives of
{
g(k)

}∞
k=1

and let {phk
}∞k=1 be the piecewise linear continuous functions in Ω = [0, 1] corre-

sponding to
{
g

(k)
x

}∞
k=1

. Then there exist subsequences{
gj := ghkj

, pj := phkj
, vj := vhkj

}∞
j=1

and limit functions g(x), p(x), v(x), such that

(3.22) lim
j→∞

gj(x) = g(x) in C(Ω),

(3.23) lim
j→∞

pj(x) = p(x) in C(Ω),

(3.24) lim
j→∞

vj(x) = v(x) weakly in L2(Ω).

The limit function g(x) is in H4(Ω) ∩H2
0 (Ω) and its derivatives satisfy

(3.25) g′(x) = p(x),
( d
dx

)4

g(x) = v(x).

Proof. In view of Proposition 3.4 both sequences of norms{
|g(k)|hk

}∞
k=1

,
{
|δ2
xg

(k)|hk

}∞
k=1

are bounded by a constant C > 0.
We use the discrete Poincaré inequality [3, Equation (9.36)]

(3.26) |δ2
xz|2h ≥ h

Nk−1∑
i=0

( zi+1 − zi
h

)2

with z = g(k) to conclude that , by the Cauchy-Schwarz inequality,

(3.27)

Nk−1∑
i=0

|g(k)
i+1 − g

(k)
i | ≤ N

1
2

k

{Nk−1∑
i=0

(g
(k)
i+1 − g

(k)
i )2

} 1
2 ≤ (hkNk)

1
2 |δ2

xg
(k)|hk

≤ C.
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Recall that (see [3, Lemma 10.4]) ‖ghk
‖L2(Ω) ≤ |g(k)|hk

and that the total vari-
ation of ghk

satisfies

TV (ghk
) =

Nk−1∑
i=0

|g(k)
i+1 − g

(k)
i |.

The fact that g(k) ∈ l2h,0 implies that |ghk
|L∞(Ω) ≤ TV (ghk

) ≤ C.
For any two indices 1 ≤ p < m ≤ Nk − 1, we get as in (3.27)

(3.28)

m∑
i=p

|g(k)
i+1 − g

(k)
i | ≤ (m− p) 1

2

{Nk−1∑
i=0

(g
(k)
i+1 − g

(k)
i )2

} 1
2

≤ [hk(m− p)] 1
2 |δ2

xg
(k)|hk

≤ C|xm − xp|
1
2 .

Thus, for any 0 ≤ x < y ≤ 1,

(3.29) |ghk
(y)− ghk

(x)| ≤ C|y − x| 12 ,

where C > 0 is independent of k.
It follows that the sequence {ghk

}∞k=1 is uniformly bounded and equicontinuous.

The Arzela-Ascoli theorem implies that there exists a subsequence
{
gj := ghkj

}∞
j=1

that converges uniformly, as asserted in (3.22).
Let g(4) be the fourth derivative (in the sense of distributions) of the function

g and let φ ∈ C∞0 (0, 1) be a test function. Denoting by < ·, · > the pairing of
distributions and test functions we have

(3.30) < g(4), φ >=

∫ 1

0

g(x)φ(4)(x)dx = lim
j→∞

∫ 1

0

gj(x)φ(4)(x)dx.

Let φ
(4)
j (x) = φ

(4)
hkj

(x) be the piecewise linear continuous function corresponding to

(φ(4))∗ (on the grid with mesh size hkj ). Clearly the sequence
{
φ

(4)
j

}∞
j=1

converges

uniformly to φ(4), so that

(3.31) lim
j→∞

∫ 1

0

gj(x)φ(4)(x)dx = lim
j→∞

∫ 1

0

gj(x)φ
(4)
j (x)dx.

The integral in the right-hand side, involving only piecewise linear functions, can
be expressed as (see [3, Lemma 10.4])
(3.32)∫ 1

0

gj(x)φ
(4)
j (x)dx = (g(kj), (φ

(4)
j )∗)hkj

−
hkj
6

Nkj
−1∑

m=0

(g
(kj)
m+1−g(kj)

m )((φ
(4)
j )∗m+1−(φ

(4)
j )∗m)

where (φ
(4)
j )∗ ∈ l2hkj

,0 is the grid function associated with the function φ(4)(x) (with

mesh size hkj ).
Clearly

max
0≤m≤Nkj

−1
|φ(4)
j )∗m+1 − (φ

(4)
j )∗m| −−−→

j→∞
0,

so that in view of (3.27) we obtain from (3.32)

(3.33) lim
j→∞

∫ 1

0

gj(x)φ
(4)
j (x)dx = lim

j→∞
(g(kj), (φ

(4)
j )∗)hkj

.

10



We now invoke the estimate (see [3, Proposition 10.8])

|δ4
xφ
∗ − (φ

(4)
j )∗|hkj

≤ Ch
3
2

kj
,

with a constant C > 0 depending only on φ. Note that δ4
x acts in the space l2hkj

,0.

It follows that

(3.34) lim
j→∞

(g(kj), (φ
(4)
j )∗)hkj

= lim
j→∞

(g(kj), δ4
xφ
∗)hkj

,

and combining Equations (3.31)-(3.34) we obtain

(3.35) lim
j→∞

∫ 1

0

gj(x)φ(4)(x)dx = lim
j→∞

(g(kj), δ4
xφ
∗)hkj

.

In view of Equation (3.30) and the symmetry of δ4
x the last equation yields

(3.36) < g(4), φ >= lim
j→∞

(δ4
xg

(kj), φ∗)hkj
= lim
j→∞

(v(kj), φ∗)hkj
.

We now turn to the sequence
{
v(k) ∈ l2hk,0

, k = 1, 2, ...
}

and its associated se-

quence of piecewise linear continuous functions vhk
.

Since ‖vhk
‖L2(Ω) ≤ |v(k)|hk

, a subsequence of
{
vj = vhkj

}∞
j=1

converges weakly

to a function v ∈ L2(Ω). We retain the notation {kj} for this subsequence.
Denote by φj(x) = φhkj

(x) the piecewise linear continuous function correspond-

ing to φ∗ (with mesh size hkj ). As in (3.32) we have
(3.37)

(v(kj), φ∗)hkj
=

∫ 1

0

vj(x)φj(x)dx+
hkj
6

Nkj
−1∑

m=0

(v
(kj)
m+1 − v(kj)

m )((φj)
∗
m+1 − (φj)

∗
m).

By the Cauchy-Schwarz inequality∣∣∣Nkj
−1∑

m=0

(v
(kj)
m+1 − v(kj)

m )
∣∣∣ ≤ N 1

2

kj

{Nkj
−1∑

m=0

(v
(kj)
m+1 − v(kj)

m )2
} 1

2 ≤ Ch−1
kj
.

Also, with a constant C > 0 depending only on φ,

|(φj)∗m+1 − (φj)
∗
m| ≤ Chkj , m = 1, 2, . . . Nkj ,

so the last equation yields ,

(3.38) lim
j→∞

(v(kj), φ∗)hkj
= lim
j→∞

∫ 1

0

vj(x)φj(x)dx.

Since vj(x) converges weakly to v(x) and φj(x) converges uniformly to φ(x), we get
finally from Equation (3.36)

(3.39) < g(4), φ >=

∫ 1

0

v(x)φ(x)dx.

By standard elliptic theory we conclude that g ∈ H4(Ω), the Sobolev space of order
four, and g(4) = v. The Sobolev embedding theorem now yields

(3.40) g ∈ C3(0, 1).

Our next goal is to obtain the boundary values of g(x). This will be carried out by
establishing the limit (3.23) (taking a further subsequence if needed).

11



By the definition of the inverse operator
(
δ4
x

)−1

we know that

(3.41) g
(k)
0 = g

(k)
Nk

= (g(k)
x )0 = (g(k)

x )Nk
= 0, k = 1, 2, . . . ,

and we need to establish similar values for g.
From the uniform convergence (3.22) and the fact that gj(0) = gj(1) = 0, j =

1, 2, . . . we obtain

(3.42) g(0) = g(1) = 0.

In order to deal with the boundary values of g′(x) we consider the sequence of

grid functions
{
g

(k)
x

}∞
k=1

, the Hermitian derivatives of the sequence
{
g(k)

}∞
k=1

.

Let
{
p

(k)
h (x)

}∞
k=1

be the corresponding sequence of continuous piecewise linear

functions (Definition 3.6).
In addition to (3.13) we have also the coercivity property [3, Propositions 10.11],

(3.43) (v(k), g(k))h = (δ4
xg

(k), g(k))h ≥ h
Nk−1∑
i=0

( (g
(k)
x )i+1 − (g

(k)
x )i

h

)2

(Compare (3.26)).
As in (3.28) we have, for any two indices 1 ≤ p < m ≤ Nk − 1,

(3.44)

m∑
i=p

|(g(k)
x )i+1 − (g(k)

x )i| ≤ (m− p) 1
2

{Nk−1∑
i=0

[(g(k)
x )i+1 − (g(k)

x )i]
2
} 1

2

≤ [hk(m− p)] 1
2 |δ4

xg
(k)|

1
2

hk
|g(k)|

1
2

hk
≤ C|xm − xp|

1
2 .

Thus, for any 0 ≤ x < y ≤ 1,

(3.45) |phk
(y)− phk

(x)| ≤ C|y − x| 12 ,

where C > 0 is independent of k.
It follows that the sequence {phk

}∞k=1 is uniformly bounded and equicontinuous,
so the Arzela-Ascoli theorem yields the existence of a subsequence (we retain the

notation kj used above)
{
pj := phkj

}∞
j=1

that converges uniformly to a continuous

function p(x). Remark that p(0) = p(1) = 0, since this is true for all pj .
We shall now establish the fact that

(3.46) p(x) ≡ g′(x).

Let φ ∈ C∞0 (0, 1) be a test function as above, and let φj(x) = φhkj
(x) (resp.

φ′j(x) = φ′hkj
(x)) be the piecewise linear continuous function corresponding to φ∗

(resp. (φ′)∗). Clearly the sequence
{
φ′j
}∞
j=1

converges uniformly to φ′.

As in (3.33) we get

(3.47)

∫ 1

0

p(x)φ(x)dx = lim
j→∞

∫ 1

0

pj(x)φ(x)dx

= lim
j→∞

∫ 1

0

pj(x)φj(x)dx = lim
j→∞

(g(kj)
x , φ∗)hkj

.
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Invoking the definition (3.9) of the Hermitian derivative,

(3.48) (g(kj)
x , φ∗)hkj

= (σ−1
x δxg

(kj), φ∗)hkj
= (δxg

(kj), σ−1
x φ∗)hkj

.

From (3.26) we infer that

(3.49) sup
j=1,2,...

{
|δxg(kj)|h

}
≤ C sup

j=1,2,...

{
|δ2
xg

(kj)|h
}
<∞.

Also σ−1
x φ∗hkj

− φ∗hkj
= σ−1

x [φ∗hkj
− σxφ∗hkj

], and it is known [3, Equation (10.87)]

that the operator-bound of σ−1
x is independent of h. Thus, noting (3.8) we infer

from (3.48)

(3.50)

lim
j→∞

(g(kj)
x , φ∗)hkj

= lim
j→∞

(δxg
(kj), φ∗)hkj

= − lim
j→∞

(g(kj), δxφ
∗)hkj

= − lim
j→∞

∫ 1

0

gj(x)φ′(x)dx = −
∫ 1

0

g(x)φ′(x)dx.

With the same arguments as those leading to Equation (3.33)) we get

(3.51)

lim
j→∞

∫ 1

0

pj(x)φ(x)dx = lim
j→∞

(g(kj)
x , φ∗)hkj

= − lim
j→∞

∫ 1

0

gj(x)φ′(x)dx = −
∫ 1

0

g(x)φ′(x)dx.

Combining this result with (3.47) we conclude that g′(x) = p(x) and in particular
g′(0) = g′(1) = 0.

�

In the proof of Theorem 3.7 we have seen that in addition to the conver-
gence (3.22), the piecewise-linear functions corresponding to the Hermitian deriva-

tives
{
g

(kj)
x

}∞
j=1

converge uniformly to g′(x) (3.23). Next we show that a weaker

convergence statement holds for the second-order derivatives.

Corollary 3.8. In the setting of Theorem 3.7 let

w(k) = δ̃2
xg

(k) = δ̃2
x

(
δ4
x

)−1

(v(k)).

Let whk
be the piecewise linear continuous functions in Ω = [0, 1] corresponding

to w(k) (Definition 3.6).

Let the sequences
{
gj := ghkj

, vj := vhkj

}∞
j=1

and limit functions g(x), v(x), be

as in theorem 3.7 and let
{
wj := whkj

}∞
j=1

.

Then

(3.52) lim
j→∞

wj(x) = g′′(x) weakly in L2(Ω),

Proof. Let φ(x) be a test function as in the proof of Theorem 3.7. Then, with
the notation used in that proof and using the definition (3.9) of the Hermitian
derivative,

(w(kj), φ∗)hkj
= (δ̃2

xg
(kj), φ∗)hkj

= (g(kj), δ̃2
xφ
∗)hkj

.
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With the same arguments as in the proof of the theorem (see in particular Equation
(3.33)) we get

(3.53)

lim
j→∞

∫ 1

0

wj(x)φ(x)dx = lim
j→∞

(w(kj), φ∗)hkj

= lim
j→∞

∫ 1

0

gj(x)φ′′(x)dx =

∫ 1

0

g(x)φ′′(x)dx,

which proves (3.52). �

3.4. Connection to the continuous case. The fact that the boundedness as-
sumption (3.21) deals with a general sequence of grid functions allowed us to get
only the weak convergence result of Corollary 3.8. However, if we deal with a se-
quence of grid functions associated with the same test function, we can obtain a
better result.

We first connect the discrete biharmonic operator to the continuous one by the
following claim [3, Theorem 10.19] . In fact, we are using the (stronger) sup-norm
estimate that is included in the proof of that theorem [3, Equation (10.167)].

Claim 3.9. Let f(x) be a smooth function in Ω = [0, 1]. Let u(x) satisfy( d
dx

)4

u(x) = f(x),

subject to homogeneous boundary conditions (1.2). Then

(3.54) |u∗ − (δ4
x)−1f∗|∞ = O(h4).

Remark 3.10. The “O(h4)” here means that there exists a constant C > 0, de-
pending only on f, such that for all integers N > 1,

|u∗ − (δ4
x)−1f∗|∞ ≤ Ch4, h =

1

N
.

Observe that the grid functions in this estimate are defined on the grid of (the
variable) mesh size h.

We can now introduce the following improvement to the weak convergence result
of Corollary 3.8.

Proposition 3.11. Let φ ∈ C∞0 (0, 1). Let {0 < N1 < N2 < ...Nk < ...} be an in-
creasing sequence of integers and denote hk = 1

Nk
, k = 1, 2, ... Let{

v(k) = φ∗k ∈ l2hk,0
, k = 1, 2, ...

}
be the bounded sequence of grid functions corresponding to φ(x) (on the sequence
of grids with mesh sizes hk).

Then, in the setting (and notations) of Corollary 3.8, we have instead of (3.52)

(3.55) lim
j→∞

wj(x) = g′′(x) in C(Ω),

where g ∈ H4(Ω) ∩H2
0 (Ω) satisfies

(
d
dx

)4

g(x) = φ(x). In fact, as is seen from the

proof , the whole sequence {whk
}∞k=1 converges in the sense of (3.55).
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Proof. Let g(x) ∈ H4(Ω) ∩H2
0 (Ω) (and in fact it is a C∞ function) satisfy

g(4)(x) = φ(x).

(Note that the function φ here is clearly the limit function v in (3.25)).
The basic optimal convergence fact in Claim 3.9 yields here

(3.56) |g∗k − (δ4
x)−1φ∗k|∞ ≤ Ch4

k, k = 1, 2, . . . ,

where g∗k ∈ l2hk,0
is the grid function corresponding to g and C > 0 is independent of

k. Observe that g∗k is the grid function corresponding to the continuous solution, and

thus not equal to the approximate grid function g(k) = (δ4
x)−1φ∗k of Theorem 3.7.

By the definition (3.4) of δ2
x we get

|δ2
xg
∗
k − δ2

x(δ4
x)−1φ∗k|∞ ≤ Ch2

k, k = 1, 2, . . . ,

and in view of (3.12) also

|δ2
xg
∗
k − δ̃2

x(δ4
x)−1φ∗k|∞ = |δ2

xg
∗
k −w(k)|∞ ≤ Ch2

k, k = 1, 2, . . . ,

where w(k) is as introduced in Corollary 3.8.
Replacing δ2

xg
∗
k by (g′′)∗k ∈ l2hk,0

, the grid function corresponding to g′′, the Taylor
expansion yields

(3.57) |(g′′)∗k −w(k)|∞ ≤ Ch2
k, k = 1, 2, . . . .

Let {(g′′)hk
(x)}∞k=1 be the sequence of piecewise linear continuous functions in

Ω = [0, 1] corresponding to {(g′′)∗k}
∞
k=1 (Definition 3.6). The inequality (3.57)

yields a similar one for the corresponding piecewise linear functions

(3.58) max
0≤x≤1

|(g′′)hk
(x)− whk

(x)| ≤ Ch2
k, k = 1, 2, . . . .

Clearly
max

0≤x≤1
|g′′(x)− (g′′)hk

(x)| ≤ Ch2
k, k = 1, 2, . . . ,

and inserting this in (3.58) we infer

(3.59) max
0≤x≤1

|g′′(x)− whk
(x)| ≤ Ch2

k, k = 1, 2, . . . ,

which concludes the proof of the proposition. �

4. A DISCRETE VERSION OF THE FOURTH-ORDER
STURM-LIOUVILLE EQUATION

Using the finite difference operators introduced in Section 3, and taking h = 1
N ,

we introduce the discrete analog of Equation (1.1) by
(4.1)

[LA,B,hg
h]i = (δ4

xg
h)i+A

∗,h
i (δ̃2

xg
h)i+(A′)∗,hi (ghx)i+B

∗,h
i ghi = f∗,hi , 1 ≤ i ≤ N−1,

where f∗,h, A∗,h, (A′)∗,h, B∗,h are the grid functions corresponding, respectively,
to f(x), A(x), A′(x), B(x).

We assume that f(x) is continuous in Ω = [0, 1].
The equation is supplemented with homogeneous boundary conditions

gh0 = (ghx)0 = ghN = (ghx)N = 0.

Thus, we seek solution gh ∈ l2h,0, such that also ghx ∈ l2h,0.
15



Remark 4.1. As in Remark 3.1 we assume that all grid functions and their Her-
mitian derivatives are in l2h,0. This amounts simply to extending the grid functions

(whose relevant values are at the interior points {xi, 1 ≤ i ≤ N − 1}) as zero at
the endpoints x0, xN .

In what follows we designate,

(4.2)


ghx, the Hermitian derivative of gh ,

vh = δ4
xg
h,

wh = δ̃2
xg
h = δ̃2

x

(
δ4
x

)−1

vh.

The basic result here is that “stability” implies “convergence” as follows.

Theorem 4.2. [General convergence] Let {0 < N1 < N2 < ...Nk < ...} be an
increasing sequence of integers and denote hk = 1

Nk
, k = 1, 2, ...

Let
{
g(k) = ghk ∈ l2hk,0

, k = 1, 2, ...
}

be a sequence of solutions to Equation (4.1)

(with h = hk). Let v(k) = vhk and assume that v
(k)
x ∈ l2hk,0

, k = 1, 2, ...
Assume that

(4.3) sup
{
|v(k)|hk

= |δ4
xg

(k)|hk
, k = 1, 2, ...

}
<∞.

Let ghk
, vhk

be the piecewise linear continuous functions in Ω = [0, 1] correspond-
ing to g(k), v(k) (Definition 3.6).

Then these sequences converge to limit functions g(x), v(x), in the following
sense

(4.4) lim
k→∞

ghk
(x) = g(x) in C(Ω),

(4.5) lim
k→∞

vhk
(x) = v(x) weakly in L2(Ω).

The limit function g(x) is in H4(Ω) ∩H2
0 (Ω) and satisfies Equation (1.1):

LA,Bg =
( d
dx

)4

g +A(x)
( d
dx

)2

g +A′(x)
( d
dx

)
g +B(x)g = f.

Proof. Writing Equation (4.1) in terms of the function v(k) yields

(4.6)
v

(k)
i +A∗,hk

i [δ̃2
x(δ4

x)−1v(k)]i + (A′)∗,hk

i [((δ4
x)−1v(k))x]i

+B∗,hk

i [(δ4
x)−1v(k)]i = f∗,hk

i , 1 ≤ i ≤ N − 1.

The boundedness assumption (4.3) enables us to invoke Theorem 3.7 and Corol-

lary 3.8. Thus there exist subsequences
{
gj := ghkj

, vj := vhkj

}∞
j=1

and limit func-

tions g(x), v(x), such that

(4.7)

 lim
j→∞

gj(x) = g(x) in C(Ω),

lim
j→∞

vj(x) = v(x) weakly in L2(Ω).

The limit function g(x) is in H4(Ω) ∩H2
0 (Ω) and

(
d
dx

)4

g = v.

Denote by phk
, whk

the piecewise linear continuous functions in Ω = [0, 1] corre-

sponding , respectively, to g
(k)
x ,w(k) (Definition 3.6). Let

{
pj = phkj

, wj := whkj

}∞
j=1

.
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From (3.23) and (3.52) we obtain,

(4.8)

 lim
j→∞

pj(x) = g′(x) in C(Ω),

lim
j→∞

wj(x) = g′′(x) weakly in L2(Ω).

Inserting these limits in (4.6) we conclude that the following equation is satisfied
in the weak sense.

(4.9)
( d
dx

)4

g +A(x)
( d
dx

)2

g +A′(x)
( d
dx

)
g +B(x)g = f.

However, in view of the Assumption (2.1) there is a unique solution to this equation
, so all subsequences of {ghk

, vhk
}∞k=1 converge to the same limit. This concludes

the proof of the theorem. �

In the proof of Theorem 5.2 we shall need a variant of Theorem 4.2, keeping all
the assumptions of the latter but allowing the right-hand side in Equation (4.1) to
be a general decaying sequence of vectors. In the following corollary we use the
notation introduced in Theorem 4.2.

Corollary 4.3. Suppose that we have a sequence of grid functions
{
ghk
}∞
k=1

, with
hk ↓ 0 as k →∞, satisfying the equation
(4.10)

[LA,B,hg
hk ]i = (δ4

xg
hk)i+A

∗,hk

i (δ̃2
xg
hk)i+(A′)∗,hk

i (ghk
x )i+B

∗,hk

i ghk
i = rhk

i , 1 ≤ i ≤ N−1,

where

(4.11) lim
k→∞

|rhk |hk
= 0.

Assume that (4.3) holds. Then

(4.12) lim
k→∞

ghk
(x) = g(x) in C(Ω),

where the limit function g(x) is in H4(Ω) ∩H2
0 (Ω) and satisfies the equation( d

dx

)4

g +A(x)
( d
dx

)2

g +A′(x)
( d
dx

)
g +B(x)g = 0.

Proof. The proof follows verbatim the proof of Theorem 4.2 and in getting Equa-
tion (4.9) for the limit, the right-hand side is zero due to the assumption (4.11). �

5. ERROR ESTIMATES OF THE DISCRETE APPROXIMATION

In Theorem 4.2 we have established the convergence of the discrete solutions
of (4.1) (extended as piecewise linear continuous functions) to the solutions of the
differential equation (1.1).

The purpose of this section is to provide a more quantitative rate of convergence.

Remark 5.1. It is fundamentally important to note that our estimates become
complicated due to the presence of boundary conditions. If instead of the (ho-
mogeneous) boundary conditions we impose periodicity conditions (namely, the
equation is solved on a circle) then the whole issue of estimating the error is reduced
to the determination of the truncation error, which in our scheme is “optimal” (of
fourth-order) as will be discussed in detail below.
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We shall carry the study under the simplifying assumption that the coefficients
in (1.1) are constant, namely, there are constants a, b ∈ R so that

A(x) ≡ a, B(x) ≡ b, x ∈ Ω = [0, 1].

Equation (1.1) now takes the simplified form

(5.1)
( d
dx

)4

u+ a
( d
dx

)2

u+ bu = f, x ∈ Ω = [0, 1].

In this case Equation (4.1) takes the simpler form

(5.2) (δ4
xg
h)i + a(δ̃2

xg
h)i + bghi = f∗,hi , 1 ≤ i ≤ N − 1.

The equation is supplemented with homogeneous boundary conditions

gh0 = (ghx)0 = ghN = (ghx)N = 0.

Thus, we seek solution gh ∈ l2h,0, such that also ghx ∈ l2h,0.
Observe that

sup
N=1,2,...

|f∗,h|h <∞, h =
1

N
.

5.1. Elliptic estimates–up to the boundary. We shall first look at the general
discrete elliptic equation ,

(5.3) δ4
xw

h + aδ̃2
xw

h + bwh = rh, rh ∈ l2h,0,

subject to the homogeneous boundary conditions.
Note that Equation (5.2) is a special case, with the right-hand side equal to f∗.
The following theorem states that all three terms in the left-hand side of (5.3)

are uniformly bounded for sufficiently small h, and in particular guarantees the
bounded invertibility of the operator

(5.4) Lh = δ4
x + aδ̃2

x + bI,

acting on grid functions v ∈ l2h,0 such that also vx ∈ l2h,0.
The theorem to be proved is the precise analog of the global regularity estimates

for elliptic operators in the continuous case [11, Section I.17].

Theorem 5.2. [Fundamental discrete Sobolev estimates] Let wh be the solu-
tion to (5.3). Then there exists an integer N0 > 1 and a constant C > 0 (depending
only on N0) such that

(5.5) |δ4
xw

h|h + |δ̃2
xw

h|h + |wh|h ≤ C|rh|h, N0 < N, h =
1

N
.

Proof. We first show the estimate for the fourth-order discrete derivative δ4
xw

h. The
estimates for the lower order terms will easily follow from that.

Suppose to the contrary that there exist sequences hk → 0 and
{
rhk ∈ l2hk,0

}∞
k=1

such that |rhk |hk
= 1 while

(5.6) lim
k→∞

|δ4
xw

hk |hk
= +∞.
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From Equation (5.3) it follows that

(5.7) |δ4
xw

hk |2hk
≤
[
|a||δ̃2

xw
hk |hk

+ |b||whk |hk
+ |rhk |hk

]2
.

The coercivity property (3.13) (note also (3.10)) implies that

|δ̃2
xw

hk |2hk
≤ 1

2(1 + |a|)
|δ4
xw

hk |2hk
+

1 + |a|
2
|whk |2hk

.

Plugging this estimate into (5.7) and recalling that |rhk |hk
= 1 we get

(5.8) |δ4
xw

hk |2hk
≤ C[1 + |whk |2hk

], k = 1, 2, . . . ,

where C > 0 is a constant depending on a, b, but not on hk.
Let zhk = δ4

xw
hk . We normalize by setting

w̃hk =
whk

|zhk |hk

, z̃hk =
zhk

|zhk |hk

.

Note in particular that |̃zhk |h = 1. Equation (5.3) can be rewritten as

(5.9) δ4
xw̃

hk + aδ̃2
xw̃

hk + bw̃hk =
rhk

|zhk |hk

, k = 1, 2, . . . .

By the above normalization the condition (4.3) is satisfied (with v(k) there cor-
responding to z̃hk here). Let w̃hk

(x), z̃hk
(x) be the piecewise-linear continuous

functions corresponding, respectively, to w̃hk , z̃hk . We can invoke Corollary 4.3 and
obtain that the following limit exists.

(5.10) lim
k→∞

w̃hk
(x) = w̃(x) in C(Ω),

The limit function w̃(x) is in H4(Ω) ∩H2
0 (Ω) and satisfies the equation

(5.11)
( d
dx

)4

w̃ + a
( d
dx

)2

w̃ + bw̃ = 0.

In view of the Assumption (2.1) we must have

w̃ ≡ 0.

However , from (5.8) we get 1 ≤ C
|δ4xwhk |2hk

+ |w̃hk |2hk
. Owing to (5.6)) we conclude

that for some η > 0,

(5.12) |w̃hk |hk
> η, k = 1, 2, . . . ,

hence by (5.10) also

|w̃|L2(Ω) ≥ η,

which is a contradiction. Thus, for some N0 > 1,

|δ4
xw

h|h < C, N0 < N, h =
1

N
.

Finally, the other two estimates in (5.5) follow from the coercivity property (3.13).
�
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5.2. Error estimates by the general elliptic (energy) approach. The dis-
crete ( finite difference) operators introduced in Section 3, acting on grid functions
associated with smooth functions, should approximate the corresponding differen-
tial operators, as h → 0. Obviously, the first requirement is the “consistency”,
namely, that the “truncation error” should vanish as h → 0. However, we aim
to derive “accuracy” estimates, measuring the difference between the discrete and
continuous solutions, in an appropriate functional setting.

We first establish an error estimate in terms of the truncation error t(h) in-
volved in the discretization of the simplified equation (5.1). This is achieved as a
straightforward application of the fundamental Theorem 5.2.

The truncation error results from replacing the continuous differential operators
by their discrete analogs. We use a superscript “h” to indicate the dependence on
the mesh size. Thus

(5.13) δ4
xu
∗,h + aδ̃2

xu
∗,h + bu∗,h = f∗,h + t(h).

Note that t(h) ∈ l2h,0.
Let gh ∈ l2h,0 be the solution to (5.2).
The “error” grid function is defined as

(5.14) eh = u∗,h − gh,

and subtracting (5.2) from (5.13) we obtain

(5.15) δ4
xe
h + aδ̃2

xe
h + beh = t(h).

The error estimate is then given in the following theorem.

Theorem 5.3. [Convergence by elliptic estimates] The convergence of the

discrete solution to the continuous solution is of order 3
2 , namely, e = O(h

3
2 ). The

same rate applies also to the discrete derivatives up to fourth order.
More explicitly, there exists a constant C > 0, depending only on f, and an

integer N0 > 1, such that

(5.16) |δ4
xe
h|h + |δ̃2

xe
h|h + |eh|h ≤ Ch

3
2 , N0 < N, h =

1

N
.

Proof. From Theorem 5.2 we infer that there exists an integer N0 > 1 and a con-
stant (depending only on N0) C > 0 such that

(5.17) |δ4
xe
h|h + |δ̃2

xe
h|h + |eh|h ≤ C|t(h)|h, N0 < N, h =

1

N
.

To get a detailed estimate, we take a closer look at the truncation term t(h). Due
to the presence of a boundary (in contrast to the periodic case), the near-boundary
points display a lower order of accuracy. In fact, we have by Taylor’s expansion

(δ2
xu
∗)j =

(( d
dx

)2

u
)∗
j

+
h2

12
(u(4))∗j +O(h4) 1 ≤ j ≤ N − 1.

The derivative (u(4))∗j can be replaced by (δ4
xu
∗)j , with truncation error O(h) for

j = 1, N − 1 and O(h4) for 2 ≤ j ≤ N − 2 [3, Proposition 10.8]. Thus in view of
Equation (3.12) we obtain

(5.18)
∣∣∣[( d

dx

)2

u
]∗
j
− [δ̃2

xu
∗]j

∣∣∣ ≤ {Ch3, j = 1, N − 1,

Ch4, 2 ≤ j ≤ N − 2.
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As for the fourth-order derivative, we have , using again [3, Proposition 10.8] (and
the Simpson operator σx defined in (3.5)),

(5.19)
∣∣∣σx[(u(4)

)∗
− δ4

xu
∗
]
j

∣∣∣ ≤ {Ch, j = 1, N − 1,

Ch4, 2 ≤ j ≤ N − 2.

From these two estimates we infer,

(5.20) |t(h)|2h ≤ Ch
[
h2 +Nh8

]
≤ Ch3,

where C > 0 depends only on f.
(Compare the proof of Proposition 10.8 in [3, Eq. (10.66)] for the pure bihar-

monic equation).
Inserting this estimate in (5.17) we get (5.16).

�

Remark 5.4. Note that the theorem does not give us the “optimal” h4 convergence.
This is due to the presence of boundary conditions, as mentioned in Remark 5.1
above. Recall that in the “pure” case a = b = 0 we do have the optimal error
estimate as in Claim 3.9.

On the other hand, it gives us also estimates for the (discrete) derivatives of
the error. In what follows we rely on these estimates in order to recover, in The-
orem 5.7, an optimal (h4) error estimate for e satisfying (5.15), but not for its
derivatives.

5.3. Optimal error estimate. The “sub-optimal” estimates (Remark 5.4) were
a consequence of the loss of accuracy near the boundary (see (5.18) , (5.19)). The

remedy to that fact is to apply the inverse operator
(
δ4
x

)−1

, which retains optimal

accuracy also near the boundary. This is what we do next.
The following proposition deals with the approximation of the second-order de-

rivative.

Proposition 5.5. For a smooth function u(x), satisfying the homogeneous bound-
ary conditions,

(5.21)
(
δ4
x

)−1[(( d
dx

)2

u
)∗
j
− δ̃2

xu
∗
j

]
= O(h4), 1 ≤ j ≤ N − 1.

Proof. Using Taylor’s expansion

(δ2
xu
∗)j =

(( d
dx

)2

u
)∗
j

+
h2

12
(u(4))∗j +O(h4), 1 ≤ j ≤ N − 1,

so that acting with σx yields

(σxδ
2
xu
∗)j = σx

[(( d
dx

)2

u
)∗]

j
+
h2

12
σx[(u(4))∗]j +O(h4), 1 ≤ j ≤ N − 1.

In view of the equality (3.12), it follows that,(
σxδ̃2

xu
∗
)
j

= (σxδ
2
xu
∗)j −

h2

12
(σxδ

4
xu
∗)j ,

hence, for 1 ≤ j ≤ N − 1,

(5.22)
(
σxδ̃2

xu
∗
)
j

= σx

[(( d
dx

)2

u
)∗]

j
+
h2

12

[
σx[(u(4))∗ − δ4

xu
∗]
]
j

+O(h4).
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We know that [3, Proposition 10.8], [10, Proposition 3],

(5.23) σx[(u(4))∗ − δ4
xu
∗)]j =

{
O(h4), j = 2, ..., N − 2,

O(h), j = 1, N − 1.
.

Thus

(5.24) R(u) := σx

[
δ̃2
xu
∗ −

(( d
dx

)2

u
)∗]

j
=

{
O(h4), j = 2, ..., N − 2,

O(h3), j = 1, N − 1.
.

Now we can write

(5.25)
σ−1
x

(
δ4
x

)−1[(( d
dx

)2

u
)∗
− δ̃2

xu
∗
]

=
(
σxδ

4
xσx

)−1

R(u).

Clearly the operators σx, σ
−1
x (see (3.5)) are uniformly (with respect to the mesh

size h) bounded, so in order to prove the estimate (5.21) it suffices to estimate
the right-hand side of (5.25). At this point we invoke the detailed structure of the

matrix (S̃)−1 associated with the operator
(
σxδ

4
xσx

)−1

, see [3, Theorem 10.19], [10,

Theorem 6]. In fact S̃ = PSP in [3, Equation (10.111)] . The result we need is the

following: the scales (in powers of h) of the elements of (S̃)−1 are such that all the

components of the vector (S̃)−1R(u), where R(u) satisfies (5.24), are O(h4). This
therefore concludes the proof. �

We now rewrite Equation (5.1) as

(5.26)
( d
dx

)−4

f = u+ a
( d
dx

)−4( d
dx

)2

u+ b
( d
dx

)−4

u, x ∈ Ω = [0, 1],

subject to the homogeneous boundary conditions

u(0) = u(1) = u′(0) = u′(1) = 0,

and Equation (5.2) as

(5.27) (δ4
x)−1f∗,h = gh + a(δ4

x)−1δ̃2
xg
h + b(δ4

x)−1gh, h =
1

N
,

subject to the boundary conditions

gh0 = (ghx)0 = ghN = (ghx)N = 0.

Now Claim 3.9 says that (for smooth functions) we can replace the continuous

operator
(
d
dx

)−4

(evaluated at grid points) by the discrete operator
(
δ4
x

)−1

“at

the expense” of an O(h4) error.
Thus, we conclude from (5.26) that

(5.28) (δ4
x)−1f∗,h = u∗,h + (δ4

x)−1
[
a
( d
dx

)2

u+ bu
]∗,h

+O(h4).

Given Proposition 5.5, we obtain from (5.28)

(5.29)
(δ4
x)−1f∗,h

= u∗,h + a
(
δ4
x

)−1

δ̃2
xu
∗,h + b

(
δ4
x

)−1

u∗,h +O(h4).
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Subtracting (5.27) from (5.29) we obtain, with a constant C > 0 independent of
h,

(5.30) 0 = eh + a
(
δ4
x

)−1

δ̃2
xe
h + b

(
δ4
x

)−1

eh + rh, |rh|h ≤ Ch4.

The error term rh is now majorized by h4 and our goal is to obtain a similar
estimate for eh from Equation (5.30). Note that Equation (5.26) is not a differen-
tial equation, but rather a “pseudo-differential” one. Similarly Equation (5.27) is
a “discrete pseudo-differential” equation. In seeking an estimate for eh from Equa-
tion (5.30) we shall therefore need a pseudo-differential version of the discrete
elliptic Theorem 5.2. The result will depend on the “sub-optimal” (see Remark 5.4)
estimates obtained in Theorem 5.3. While the estimates there were not of fourth-
order, they involved also the discrete derivatives of the error. We shall incorporate
these estimates (for eh and its derivatives) in the following proposition.

Proposition 5.6. [Fundamental discrete pseudo-differential estimates] Let{
vh ∈ l2h,0, 0 < h < h0

}
be a family of solutions (depending on the mesh-size pa-

rameter h) to the equation

(5.31) vh + a
(
δ4
x

)−1

δ̃2
xv
h + b

(
δ4
x

)−1

vh = rh.

Assume that vhx ∈ l2h,0, and that, for some β > 0 (independent of h)

(5.32) |δ4
xv
h|h ≤ β.

Then there exists an integer N0 > 1 and a constant C > 0 (depending only on N0)
such that

(5.33) |vh|h ≤ C|rh|h, N0 < N, h =
1

N
.

Proof. Suppose to the contrary that there exist sequences hk → 0 and
{
rhk ∈ l2hk,0

}∞
k=1

such that

(5.34) lim
k→∞

|rhk |hk
= 0

while

(5.35) |vhk |hk
= 1, k = 1, 2, . . . .

Let ghk = (δ4
x)−1vhk , so that Equation (5.31) takes the form

(5.36) vhk + a
(
δ4
x

)−1

δ̃2
xv
hk + bghk = rhk .

Note that the operators δ4
x and δ̃2

x do not commute, and this is the reason
we cannot invoke Theorem 5.2 at this point.

By (5.35) |δ4
xg
hk |hk

= |vhk |hk
= 1.

Let ψ ∈ C∞0 (0, 1) and set ψ(4) = φ. Let
{
φ∗hk
∈ l2hk,0

, k = 1, 2, ...
}

be the se-

quence of grid functions corresponding to φ(x) (see (3.1)).
Taking the scalar product of the equality in (5.36) with φ∗hk

and using the sym-
metry of the discrete operators we get

(5.37) (vhk , φ∗hk
)hk

+ a
(
vhk , δ̃2

x(δ4
x)−1φ∗hk

)
hk

+ b(ghk , φ∗hk
)hk

= (rhk , φ∗hk
)hk

.
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By assumption (5.34) the right-hand side in Equation (5.37) tends to zero as k →∞.
Denote whk = δ̃2

x(δ4
x)−1φ∗hk

.
We recall Definition 3.6 and introduce the continuous, piecewise linear functions

vhk
(x), ghk

(x), whk
(x), φhk

(x) corresponding, respectively, to the grid functions
vhk , ghk , whk , φ∗hk

.
The discrete scalar products in (5.37) can be replaced by integrals of the corre-

sponding functions, using the algebraic equality [3, Lemma 10.4]):

(5.38)

(vhk , φ∗hk
)hk

=

∫ 1

0

vhk
(x)φhk

(x)dx

+
hk
6

Nk−1∑
m=0

((vhk)m+1 − (vhk)m)((φ∗hk
)
m+1
− (φ∗hk

)
m

), Nk =
1

hk
,

and similarly for the other terms (compare (3.37)).
we therefore have (compare derivation of (3.38))

(5.39) lim
k→∞

(vhk
, φhk

)L2(Ω) + a(vhk
, whk

)L2(Ω) + b(ghk
, φhk

)L2(Ω) = 0,

Since |vhk |hk
= 1, k = 1, 2, .. we can invoke the compactness Theorem 3.7 and ob-

tain a subsequence
{
gj(x) = ghkj

(x)
}∞
j=1

converging uniformly to a function g(x) ∈

H4(Ω)∩H2
0 (Ω). Furthermore, the corresponding subsequence

{
vj(x) = vhkj

(x)
}∞
j=1

converges weakly to v(x) = g(4)(x). However, this convergence is in fact uniform
in view of the assumption (5.32) (again using Theorem 3.7). We therefore have

v ∈ H4(Ω) ∩H2
0 (Ω),

and the normalization assumption (5.35) entails

(5.40) |v|L2(Ω) = 1.

We can use Proposition 3.11, with the function g there replaced by ψ here,
namely, lim

k→∞
whk

(x) = ψ′′(x) in C(Ω). Passing to the limit (as j → ∞) in Equa-

tion (5.39) we obtain,

(5.41) (g(4), φ)L2(Ω) + a(g(4), ψ′′)L2(Ω) + b(g, φ)L2(Ω) = 0.

Since ψ ∈ C∞0 (0, 1) the same is true for its derivatives and we can integrate twice
by parts in the middle term, so that

(g(4), ψ′′)L2(Ω) = (g′′, φ)L2(Ω),

and inserting this in (5.41)

(5.42) (g(4) + ag′′ + bg, φ)L2(Ω) = 0.

Since ψ(4) = φ it follows that(( d
dx

)4
(g(4) + ag′′ + bg), ψ

)
L2(Ω)

= 0.

From the fact that ψ is a general test function we infer that( d
dx

)4
(g(4) + ag′′ + bg) = 0⇒ g(4) + ag′′ + bg = p(x),
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where p(x) is at most a cubic polynomial.
Recall that v(x) = g(4)(x) and v ∈ H2

0 ∩ H4, so we can differentiate the last
equation four times to get

(5.43) v(4) + av′′ + bv = 0.

Assumption (2.1) implies v = 0. This is in contradiction to (5.40), thus prov-
ing (5.33). �

The optimal (fourth-order) estimate of the error is stated in the following theo-
rem.

Theorem 5.7. [Fourth-order estimate of the error] Consider Equation (5.1)
and the corresponding finite difference scheme (5.2).

Let eh = u∗,h − gh be the error grid function (5.14).
Then we have an optimal estimate

|eh|h = O(h4).

More explicitly, there exists a constant C > 0, depending only on f, and an integer
N0 > 1, such that

(5.44) |eh|h ≤ Ch4, N0 < N, h =
1

N
.

Proof. eh satisfies Equation (5.30). From Theorem 5.3 we know that it satisfies the
condition (5.32), hence we can apply Proposition 5.6. Thus, from (5.30)

|eh|h ≤ C|rh|h ≤ Ch4.

�

Remark 5.8. (small coefficients) If the coefficients a, b are small then the opti-
mal error estimate follows directly from the invertibility of Equation (5.30), in view
of the explicit bounds (independent of h) in Remark 3.5.

The optimal estimate of Theorem 5.7 is in contrast to the estimates in Theo-
rem 5.3, concerning the errors involved in comparing the derivatives of the exact
solution to those of the discrete one. Invoking the coercivity property of the discrete
biharmonic operator, we can actually improve these estimates as follows.

Corollary 5.9. The Hermitian derivative ehx and the second-order derivative δ̃2
xe
h

of the error function are, respectively, of order O(h
27
8 ) and O(h

11
4 ). More explicitly,

there exists a constant C > 0, independent of h, such that

(5.45) |ehx|h ≤ Ch
27
8 , |δ̃2

xe
h|h ≤ Ch

11
4 , N0 < N, h =

1

N
.

Proof. Applying the coercivity property (3.13) to eh and using the estimates (5.44)
and (5.16) we get

|δ̃2
xe
h|2h ≤ C|δ4

xe
h|h|eh|h ≤ Ch

3
2h4,

hence indeed the O(h
11
4 ) for δ̃2

xe
h.

We now use the coercivity property of the second-order derivative [3, Equation
(9.34)] and the previous estimate to get

|δxeh|2h ≤ C|δ2
xe
h|h|eh|h ≤ Ch4+ 11

4 = Ch
27
4 ,
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from which we infer that |δxeh|h = O(h
27
8 ). However by definition (3.9) we have

ehx = σ−1
x δxe

h, and the operator σ−1
x is uniformly (with respect to h) bounded [3,

Equation (10.24)]. It follows that also |ehx|h = O(h
27
8 ). �

6. NUMERICAL RESULTS

In this section we present numerical results of a representative set of test prob-
lems. The underlying equation is always (1.1), subject to the homogeneous bound-
ary conditions (1.2). The scheme used is (4.1).

Our notation here is in accord with that employed in the previous sections, in
particular Section 5. For the reader’s convenience we recall the main features to be
used here as follows.

For a given continuous function v(x), x ∈ [0, 1], we denote by v∗ (3.1) its associ-
ated grid function . When it is expedient to indicate explicitly the mesh size h, we
use the notation v∗,h, as in (5.13).

v∗,hj = v(xj), xj = jh, 0 ≤ j ≤ N.

gh (4.1) is the discrete solution, approximating the analytic solution u(x).
eh = u∗,h − gh is the error grid function (5.14).
The discrete grid functions corresponding to the second-order and third-order

derivatives are, respectively, δ̃2
xg
h (3.10) and δ2

xg
h
x.

The discrete norms | · |h and | · |∞ are defined, respectively, by (3.2) and (3.3) .
For linear operators A : l2h → l2h we use |A|h to denote the operator norm.

Remark 6.1 (Concerning errors for derivatives). In Corollary 5.9 we derived
estimates for the derivatives of the error function eh. These are the discrete deriva-
tives, so that only values of the exact solution itself are used. In contrast, in our
numerical test cases here we compare (discrete) derivatives of the calculated solu-
tion to the grid functions corresponding to the exact derivatives. Thus, the error
for the first derivative is displayed here as ( d

dxu)∗,h − ghx and not u∗,hx − ghx, the
difference of the Hermitian derivatives.

Indeed, comparing with derivatives of the exact solution seems to be a stricter
criterion. However, due to the high order accuracy of the Hermitian derivative
(( d
dxu)∗,h − u∗,hx = O(h4) [3, Lemma 10.1]) the two estimates are compatible.
A similar observation is valid for higher-order derivatives as well.

Remark 6.2 (Numerical efficiency). Even though the main purpose of the paper
is to present a “discrete elliptic theory”, resulting in a high-order compact scheme,
the solution of the linear system (4.1) is quite efficient. In fact, it involves (that
is the compactness of the scheme) the inversion of a three-diagonal matrix of size
N×N. In addition, another (simultaneous) inversion of the three-diagonal Simpson
matrix σx (see (3.9)) is required for the connection of the unknown gh to its Hermit-
ian derivative ghx. Thus the algorithm requires the inversion of two three-diagonal
N ×N matrices. The fact that the scheme possesses “optimal accuracy” enables us
to use a very low N. This is demonstrated in the numerical examples hereafter.

We display numerical results for three test cases.

• The first test case deals with the pure biharmonic equation. We give de-
tailed results for the differences of all derivatives (up to third order).
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• The second test case is an example of Equation (5.1), and shows fourth order
accuracy for u, in agreement with Theorem 5.7. Fourth order accuracy is
actually obtained not only for u but also for the derivative u′(x), whereas

Corollary 5.9 states only O(h
27
8 ) error estimate for the derivative .

• The third test case is a numerical example introduced in [10].
The solution is highly oscillatory around the center of the interval [0, 1].

6.1. A pure biharmonic problem. The first test case corresponds to the pure
biharmonic problem

(6.1)

{
u(4)(x) = f(x), 0 < x < 1,

u(0) = u(1) = 0, u′(0) = u′(1) = 0,

where

(6.2) f(x) =
ex

2
Re
[
1− (1 + 4iπ)4e4iπx

]
,

with exact solution

(6.3) u(x) = ex sin2(2πx).

The numerical scheme is (5.2) which in this case reduces to

(6.4) δ4
xg
h = f∗,h.

In Table 1 we display the errors using both the l∞ norm (3.3) and the l2h norm (3.2)
on a number of grids ranging from N = 8 points (very coarse grid) to N = 64 points.

The observed convergence rates are 4, 4, 4 and 2 for u(x), u′(x), u′′(x) and
u(3)(x), respectively, better than claimed in Corollary 5.9.

In Table 1 we also present, for u(x), u′(x), u′′(x), the relative errors. They have
a magnitude of 2%, 0.1%, 0.01% and 0.005% on the grids N = 8, 16, 32 and 64,
respectively. The relative error for u(3)(x) is of 20%, 5%, 1% and 0.5% on the same
grids.

In the last row of Table 1 we display the truncation error for the 4−th order
derivative

(6.5) τj = δ4
x(u∗,h − gh)j , 1 ≤ j ≤ N − 1.

In view of (6.4) this is just the difference between the discrete operator δ4
x acting

on the grid function u∗,h (the exact solution restricted to the grid) and the grid
function corresponding to the exact right-hand side f(x).

In accordance with the analysis in [3, Section 10.4], we obtain an asymptotic

value of O(h) in the maximum norm and of O(h
3
2 ) in the l2h norm.
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N = 8 Rate N = 16 Rate N = 32 Rate N = 64
|u∗,h − gh|∞ 5.8852(-2) 4.43 2.7340(-3) 4.09 1.6000(-4) 4.03 9.8219(-6)
|u∗,h − gh|∞/‖u‖∞ 2.76(-2) 1.28(-3) 7.51(-5) 4.61(-6)
|u∗,h − gh|h 3.1390(-2) 4.43 1.4604(-3) 4.11 8.4766(-5) 4.03 5.2006(-6)
|(u′)∗,h − ghx|∞ 3.5830(-1) 4.15 2.0183(-2) 4.01 1.2489(-3) 4.01 7.7252(-5)
|(u′)∗,h − ghx|∞/‖u′‖∞ 2.55(-2) 1.44(-3) 8.89(-5) 5.50(-6)
|(u′)∗,h − ghx|h 2.3440(-1) 4.21 1.2680(-2) 4.05 7.6410(-4) 4.01 4.7323(-5)

|(u′′)∗,h − (δ̃2
xg
h)|∞ 4.8479(+0) 3.92 3.1931(-1) 4.03 1.9543(-2) 3.98 1.2345(-3)

|(u′′)∗,h − (δ̃2
xg
h)|∞/‖u′′‖∞ 2.26(-2) 1.49(-3) 9.13(-5) 5.77(-6)

|(u′′)∗,h − δ̃2
xg
h|h 2.6941(+0) 4.08 1.5902(-1) 4.00 9.9617(-3) 3.99 6.2722(-4)

|(( d
dx )3u)∗,h − (δ2

xg
h
x)|∞ 4.7894(+2) 1.95 1.2391(2) 1.95 3.2148(1) 2.00 8.0205(0)

|(( d
dx )3u)∗,h−(δ2xg

h
x)|∞

‖u(3)‖∞
1.95(-1) 5.04(-2) 1.31(-2) 3.26(-3)

|(( d
dx )3u)∗,h − δ2

xg
h
x|h 2.6552(+2) 1.99 6.6681(1) 2.00 1.6714(1) 2.00 4.1869(0)

|τ |∞ 1.2395(+3) 1.80 3.5509(+2) 1.10 1.6531(+2) 1.02 8.1351(+1)
|τ |h 4.9450(+2) 2.32 9.8824(+1) 1.61 3.2373(1) 1.52 1.1249(+1)

Table 1. Error levels and convergence rates for the test case (6.1)-
(6.3). For each function u(x), u′(x), u′′(x) and ( d

dx )3u(x) the max

error, relative max error and l2 errors are given. The convergence
rates are 4 for u(x), 4 for u′(x), 4 for u′′(x) and 2 for ( d

dx )3u(x).

On the last two lines, the truncation error for δ4
xu
∗,h−f∗,h are dis-

played in max norm (convergence rate 1) and l2 norm (convergence
rate 3/2).

6.2. A regular test case. We consider Equation (5.1) with a = 1, b = 1 :

(6.6)

{ (
d
dx

)4

u+
(
d
dx

)2

u+ u = f, x ∈ Ω = [0, 1],

u(0) = u(1) = 0, u′(0) = u′(1) = 0

Let

f(x) =
ex

2

{
3−

[(
3− 7(4π)2 + (4π)4

)
cos(4πx)−

(
8π(3− 32π2)

)
sin(4πx)

]}
.

The exact solution u(x) is readily seen to be

(6.7) u(x) = ex sin2(2πx).

The scheme is (5.2) which in our case reduces to

(6.8) (δ4
xg
h)j + (δ̃2

xg
h)j + ghj = f∗,hj , 1 ≤ j ≤ N − 1.

The functions u(x), u′(x), u′′(x), ( d
dx )3u(x) and ( d

dx )4u(x) are displayed in Fig. 1.

The values of the discrete solution gh and its subsequent discrete derivatives on
the coarse grid N = 8 are represented by squares. This very coarse grid corresponds
to the minimally acceptable resolution with 5 points per wavelength.

In Table 2 we give the error values in the l∞ norm, the relative errors in the l∞

norm and the errors in the l2h norm for u, u′, u′′, ( d
dx )3u and ( d

dx )4u.
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Figure 1. Exact (solid curve) and calculated solution (black
squares) using a 7 point grid (N = 8), for equation (6.6). The
exact solution is given in (6.7)) and the calculated solution is solu-
tion of (6.8). The magnitude of u(x), u′(x), u′′(x), ( d

dx )3u(x) and

( d
dx )4u(x) is accurately calculated even on the very coarse grid with

parameter N = 8.

The excellent accuracy is clearly observed for u(x), u′(x), u′′(x) and ( d
dx )4u(x).
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N = 8 Rate N = 16 Rate N = 32 Rate N = 64
|u∗,h − gh|∞ 5.9484(-2) 4.43 2.7681(-3) 4.09 1.6199(-4) 4.03 9.9484(-6)
|u∗,h − gh|∞/‖u‖∞ 2.79(-2) 1.30(-3) 7.60(-5) 4.67(-6)
|u∗,h − gh|h 3.1726(-2) 4.42 1.4784(-3) 4.11 8.5855(-5) 4.03 5.2681(-6)
|(u′)∗,h − ghx|∞ 3.5792(-1) 4.15 2.0155(-2) 4.02 1.2465(-3) 4.02 7.7101(-5)
|(u′)∗,h − ghx|∞/‖u′‖∞ 2.55(-2) 1.43(-3) 8.87(-5) 5.49(-6)
|(u′)∗,h − ghx|h 2.3329(-1) 4.21 1.2609(-2) 4.05 7.5974(-4) 4.01 4.7051(-5)

|(u′′)∗,h − δ̃2
xg
h|∞ 4.8838(+0) 3.93 3.2109(-1) 4.03 1.9667(-2) 3.99 1.2419(-3)

|(u′′)∗,h − δ̃2
xg
h|∞/‖u′′‖∞ 2.28(-2) 2.50(-3) 9.19(-5) 5.80(-6)

|(u′′)∗,h − δ̃2
xg
h|h 2.7085(+0) 4.08 1.5991(-1) 4.00 1.0020(-2) 3.99 6.3095(-4)

|(( d
dx )3u)∗,h − (δ2

xg
h
x)|∞ 4.7848(+2) 1.95 1.2388(+2) 1.95 3.2146(+1) 2.00 8.0204(+0)

|(( d
dx )3u)∗,h−(δ2xg

h
x)|∞

‖( d
dx )3u‖∞

1.95(-1) 5.04(-2) 1.31(-2) 3.26(-3)

|(( d
dx )3u)∗,h − (δ2

xg
h
x)|h 2.6533(+2) 1.99 6.6667(+1) 2.00 1.6713(+1) 2.00 4.1668(+0)

|(( d
dx )4u)∗,h − (δ4

xg
h)|∞ 4.8245(+0) 3.92 3.1840(-1) 4.03 1.9505(-2) 3.98 1.23332(-3)

|(( d
dx )4u)∗,h−(δ4xg

h)|∞
‖( d

dx )4u‖∞
1.49(-4) 9.82(-6) 6.01(-7) 3.80(-8)

|(( d
dx )4u)∗,h − (δ4

xg
h)|h 2.6901(+0) 4.08 1.5916(-1) 4.00 9.9782(-3) 3.99 6.2845(-4)

|τ |∞ 1.2430(+3) 1.81 3.5504(+2) 1.10 1.6530(+2) 1.02 8.1350(+1)
|τ |h 4.9663(+2) 2.33 9.8831(+1) 1.61 3.2372(+1) 1.52 1.1249(+1)

Table 2. Error levels and convergence rates for the test case
(6.6)-(6.7). For each function u(x), u′(x), u′′(x), ( d

dx )3u(x) and

( d
dx )4u(x), the max error, relative max error and l2 errors are given.

The convergence rates are 4 for u(x), 4 for u′(x), 4 for u′′(x), 2 for
( d
dx )3u(x) and 4 for ( d

dx )4u(x). On the last two lines, the trunca-

tion error for δ4
xu
∗,h−f∗,h are displayed in max norm (convergence

rate 1) and l2 norm (convergence rate 3/2).

6.3. Oscillating test case. Here we consider the full Equation (1.1):

(6.9)

{ (
d
dx

)4

u+A(x)
(
d
dx

)2

u+A′(x)
(
d
dx

)
u+B(x)u(x) = f(x), 0 < x < 1,

u(0) = u(1) = 0, u′(0) = u′(1) = 0

The functions A(x) and B(x) are taken as oscillatory (but regular) functions,
defined by:

(6.10)

{
A(x) = CA(1 + 0.5 sin(40πx));A′(x) = 20CAπ cos(40πx);

B(x) = CB sin(40πx).

The function u(x) is in this case [10]:

(6.11) u(x) = p(x)/(sin(q(x)) + ε)
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Figure 2. Exact (solid curve) and calculated solution (black
squares) using a 80 point coarse grid (N = 80), for equation (6.9).
The exact solution is given in (6.11))-(6.12)). Despite the highly
oscillatory behavior of u(x) and its derivatives, the magnitude of
u(x), u′(x), u′′(x), ( d

dx )3u(x) and ( d
dx )4u(x) is very accurately cap-

tured even on the very coarse resolution of the N = 80 grid.
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N = 64 Rate N = 128 Rate N = 256 Rate N = 512
|u∗,h − gh|∞ 8.3916(-1) 5.03 2.5677(-2) 4.08 1.5147(-3) 4.00 9.4041(-5)
|u∗,h − gh|∞/‖u‖∞ 8.4228(-1) 2.5777(-2) 1.5204(-3) 9.4390(-5)
|u∗,h − gh|h 1.7924(-1) 4.82 6.3341(-3) 4.11 3.6767(-4) 4.02 2.2604(-5)
|(u′)∗,h − ghx|∞| 3.9828(+1) 4.25 2.0891(+0) 4.17 1.1605(-1) 4.04 7.0551(-3)
|(u′)∗,h − ghx|∞/‖u′‖∞ 2.5858(-1) 1.3563(-2) 7.5342(-4) 4.5804(-5)
|(u′)∗,h − ghx|h 1.0114(+1) 4.43 4.6866(-1) 4.13 2.6838(-2) 4.03 1.6451(-3)

|(u′′)∗,h − δ̃2
xg
h|∞ 1.4971(+4) 4.70 5.7429(+2) 4.04 3.4817(+1) 3.96 2.2349(+0)

|(u′′)∗,h−δ̃2xg
h|∞

‖u′′‖∞ 5.9422(-1) 2.2794(-2) 1.3820(-3) 8.8707(-5)

|(u′′)∗,h − δ̃2
xg
h|h 3.9786(+3) 4.85 1.3824(+2) 4.09 8.1374(+0) 4.02 5.0119(-1)

|(u(3))∗,h − δ2
xg
h
x|∞ 1.6790(+6) 1.60 5.5408(+5) 1.90 1.4872(+5) 1.99 3.7450(+4)

|(u(3))∗,h−δ2xg
h
x|∞

‖u(3)‖∞
4.0468(-1) 1.3355(-1) 3.5845(-2) 9.0266(-3)

|(u(3))∗,h − δ2
xg
h
x|h 5.2628(+5) 1.80 1.5138(+5) 1.99 3.8188(+4) 2.00 9.57779(+3)

|(u(4))∗,h − δ4
xg
h|∞ 1.4720(+8) 4.65 5.8746(+6) 4.02 3.61729(+5) 3.95 2.3428(+4)

|(u(4))∗,h−δ4xg
h|∞

‖u(4)‖∞
2.0996(-1) 8.3792(-3) 5.2094(-4) 3.3416(-5)

|(u(4))∗,h − δ4
xg
h|h 3.9528(+7) 4.86 1.3573(+6) 4.08 8.0024(+4) 4.02 4.9385(+3)

|τ |∞ 3.2156(+8) 4.86 1.10859(+7) 4.18 6.1042(+5) 4.01 3.7991(+4)
|τj |h 9.6786(+7) 5.19 2.6503(+6) 4.28 1.3638(+5) 4.07 8.1440(+3)

Table 3. Error levels and convergence rates for the test case
(6.9)-(6.10). For each function u(x), u′(x), u′′(x), ( d

dx )3u(x) and

( d
dx )4u(x), the max error, relative max error and l2 errors are given.

The convergence rates are 4 for u(x), 4 for u′(x), 4 for u′′(x), 2 for
( d
dx )3u(x) and 4 for ( d

dx )4u(x). On the last two lines, the trunca-

tion error for δ4
xu
∗,h−f∗,h are displayed in max norm (convergence

rate 4) and l2 norm (convergence rate 4).

with

(6.12) p(x) = x2(1− x)2, q(x) = (x− 1/2)2, ε > 0

The parameter ε = 0.025 serves for monitoring the oscillations frequency. The
source term f(x) is obtained by applying Equation (6.9) to the function (6.11).

The scaling constants CA and CB are chosen to ensure that the magnitudes of
the various terms in (6.9) are roughly equal.

The values are CA = 104 and CB = 108.
Taking into account the frequency of the oscillations of A(x) and B(x) in (6.10),

a plausible stencil of 5 points per wavelength gives a mesh size of h = 1/80. This
resolution is therefore a lower bound for a computational grid.

The numerical scheme is now the full scheme (4.1).
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In Fig. 2 we plot (as solid lines) the graphs of the exact solution and its
derivatives, and indicate the corresponding discrete solutions using the coarse grid
(N = 80, i.e. h = 1/80.) Even at this low resolution, all the five functions u(x),
u(x), u′′(x), ( d

dx )3u(x) and ( d
dx )4u(x) are very well approximated. This is particu-

larly true for the functions u′(x) and ( d
dx )4u(x). In Table 3 we display the errors,

convergence rates, and relative errors for the grid functions corresponding to u(x),
u(x), u′′(x), u(3)(x) and u(4)(x) compared, respectively, to their discrete analogs

gh, ghx, δ̃
2
xg
h, δ2

xg
h
x, δ

4
xg
h.

Observe that the truncation errors (6.5)

(6.13) τj = δ4
x(u∗,h − gh)j , 1 ≤ j ≤ N − 1,

are of order 4, better than what could be inferred from Corollary 5.9. This is typical
of a periodic behavior, due to the fact that all derivatives almost vanish near the
boundary. See Remark 5.1. Fig. 3 shows the convergence rates for the discrete
approximations to the functions u(x), u′(x), u′′(x), ( d

dx )3u(x) and ( d
dx )4u(x), in

terms of decreasing h.
Fourth order convergence is observed for u(x), u′(x), u′′(x) and ( d

dx )4u(x). Sec-

ond order convergence is obtained for ( d
dx )3u(x).
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Figure 3. Convergence rate for the test case (6.9)-(6.10)). A
series of 5 grids with N = 128, 256, 512, 1024 and 2048 is used.
Fourth order is obtained for u, u′, u′′, ( d

dx )4u. Second order is

obtained for ( d
dx )3u.
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