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Abstract

We present a numerical method to compute accurately the acoustic wave diffracted
by an elastic 2D-wedge immersed in a potential fluid, in the high-frequency limit. The
principle of the method is to write the solution with the help of a spectral function
which 1s the Fourier transform of layer potentials along the faces of the wedge. This
meromorphic function is the solution of a singular kernel integral system. The analytical
and numerical properties of the diffracted wave are entirely based on the structure of
this function. This function is decomposed into an explicit polar part, corresponding to
the successive reflections and refractions of the incident wave against the faces, and an
holomorphic one, computed by a Galerkin/collocation method. Diffraction diagrams
for various angles of the wedge and various incidence angles are displayed.

1 Introduction

Consider an infinite bidimensional wedge of angle ¢ €]0, 7|, separating an elastic medium
2, and a fluid 2y whose common boundary is I' = I'y UI'y. The longitudinal and transversal
velocities in the elastic solid are ¢y, ¢, and the sound velocity in the fluid is ¢y . If we
choose the units such that the density of the solid p; = 1 and the velocity ¢ = 1, then the
Lame parameters A, p satisfy A+ 2p = 1. In addition, we set vy = 1/co, vy = 1 /e, v, = 1.
The time harmonic dimensionless problem reads

(1) (E4+1v=0in Q (A+13)h=0in Q
with the boundary conditions
(2) (A divo+2ue(v)) @ —iph i = iphy, it w7 — gradh -7 = grad by, - 7@ on T

(continuity of the static pressure and of the normal velocity along I'). The vector v is
the displacement in the solid and h the velocity potential in the fluid. The incident
dimensionless plane wave in the fluid is taken as

1. o
) (o) = 5 Pleestmysindi),
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Fia. 1. A wedge of angle ¢ dlluminated by an incident plane wave with incidence angle 85,

Suppose that «;, 3;,v; are potential layers supported by the faces of the wedge and define
the functions v;, hj, 7 =1,2 by

(4) vi=—(E+ 17! l( gj ) ®5j] hj = —(A+5)3 v ® 4]

then the functions v = vy + vy, h = hy + hy are solution of (1). In (4), the superscipt “~1”
corresponds to the inversion of the Fourier symbols of the operators £ +1, (A + 1), and
the subscript “;” indicates that this inversion is taken in order to define properly a notion
of “outgoing” solution. Moreover, é; and d, are the integration measures on the faces I'y
and I'y of the wedge. In fact, an explicit one dimensional integral formula is available for
(4), namely (for, say, vy, hy)

(5) vy (e, y) = 4—7172/]1%6””5 Ly(&,y) [



() (o) = o= [ L€ y)nE) de

where L,(&,y) is a 2x2 matrix function and Lp(&,y) is a scalar function, both known
explicitly. We call spectral function the couple of functions (corresponding to the face I'y 5
of the wedge).

a;(€) .
(7) i) =1 B9 |, j=12.
%i(6)
Applying the stationary phase theorem to (5-6) yields that the amplitude A(6,;5) of the

diffracted wave in the fluid, in the limit p? = |z|*+|y|? — oo in the direction of observation
Oops 18

(8) AOsps) = |91 (v0 €08 bops) + Y2(vo cos(p — Oops)) |

(Indeed, A(f,s) is the amplitude of the term in p~ 2 in the asymptotics). The spectral
function is therefore our basic unknown.

2 Numerical computation of the spectral function

The boundary conditions (2) are equivalent to the following system of integral equations
W1 W2

9) DM +TMY=——"— ; TM> +DM>¥y =

) ! 2 ! T - cos(b;, + )

& —vgcosty,

where DM and T'M are integral operators with singular kernels. The first equation in (9)
corresponds to I'; and the second to I'y. The vectors Wi, Wy € C° are given by the Fourier
transforms of the incident wave h;,. Because X, Y9 are basically Fourier transforms of
functions supported in z > 0, they are holomorphic in the lower complex half-plane &€ < 0.
Moreover, the system (9) permits an explicit description of the poles of 3; in the upper
half-plane € > 0. These poles are generated by a recurrence relation. The smallest is
the angle of the wedge, the largest is the number of poles. Physically, they correspond to
the successive reflections and refractions of the incoming wave against [';, I'y. Substracting
the polar part y; (&) from X;, we get a remainder X; = X; — y;, which is holomorphic in
C—] — o0, —1]. This function is approximated by a Gallerkin/collocation function X;(¢).
Choosing ¢ (£) = @,ek > 1,1 < k < N, as the Galerkin functions, and b > 1 as the
collocation points, we solve the linear system whose unknowns are the components of the
approximation Xj = Eoe?cpk. This system reads, 1 <! < N)

(10) DM.X1(br) + TM.Xs(br) = i — (DM.yy (bi) + T M.y2(br))
TM.Xy(b) + DM.Xs(b) = greastzrsy — (DMoyi(br) + DM.ya(br)

3 Numerical results

We display in figures 2-4 some diffraction diagrams for the couple dural/water. The plotted
function is the decimal logarithm of A(f,,5). These curves correspond to the acoustic noise
measured in debye. We observe the bifurcations corresponding to the reemission in the
fluid at the longitudinal critical angles for each face #} = Arccos % =103° 67 = ¢ — 01.
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Note that the effect of the transversal angle 6} = Arccos l;—g = 118° is hidden by the one of
the Rayleigh angle 8% = 120°. The two large peaks correspond to the incident and reflected
waves. Note also that the oscillations for the wedge ¢ = 25° at §;, = 70° are physical.
They correspond to the excitation of the wedge by an incident wave, with an angle between
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the two critical angles (longitudinal and transversal).

We refer to [1] for a mathematical analysis of the problem, and for a detailed
presentation of the numerical approximation. For experimental results, cf [2], [3].
mathematical and physical results about the diffraction of a scalar wave by a wedge, cf [4],

[5, [6], [7]; [8], [9]-
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