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abstract: We present the numerical analysis on the Poisson problem of a

mixed Petrov-Galerkin Finite Volume scheme for equations in divergence form

div'(u;ru) = f , which has been introduced in [CoC 98]. As the original box

scheme of Keller, this scheme uses face centered degrees of freedom for the

primal unknown u and for the ux '. The underlying Finite Element spaces

are the non-conforming space of Crouzeix-Raviart for the primal unknown and

the div-conforming space of Raviart-Thomas for the ux. Optimal order error

estimates are derived for the Poisson problem.
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1. Introduction

The name of \box-scheme" is a generic denomination for several numerical

schemes of di�erent origins. It has been introduced primitively by H.B. Keller

in the '70 on the 1-D heat equation, [Ke 71]. Generally speaking, the discrete

equations are de�ned in a box-scheme from some kind of averages of the con-

tinuous equations on \boxes". Therefore, they are conservative schemes, i.e.

schemes which guarantee, for equations in divergence form, an exact conserva-

tion of the ux at the level of the box. At least two variants of box-schemes

are known in the litterature. The �rst one has been introduced in the '80 in

compressible Computational Fluid Dynamics. As in Keller's scheme, the basic

idea is that locating the degrees of freedom at the center of the faces instead at

the center of the cells, could be more interesting for an accurate evaluation of
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conservative uxes, [CDH 83], [CM 86], [Co 92]. Note that this kind of schemes

has received much less attention in the CFD Finite Volume communauty than

the cell-centered Finite Volume schemes. The second kind of box-schemes is

known under the name of \box-method" or \�nite volume element method".

For the Laplace equation ��u = f , it consists of an approximation of u in

a �nite-element P

1

or Q

1

-space. The discrete equations are de�ned by avera-

ging the equation on a dual box surroundind each vertex of the mesh, [BR 87],

[Ha 89], [CMM 91], [TS 93]. In this kind of scheme, two meshes are used. The

primal one as support of the trial functions, and the dual one for designing the

boxes for the dicrete conservative equations. This design is in fact similar to

the one of the cell-vertex Finite Volume method in CFD, [FS 89]. Concerning

the numerical analysis of Finite Volume cell-centered methods, beside the ex-

haustive direct analysis of [EGH 97], there is by now an attempt in the FEM

communauty for interpreting mixed Finite Elements methods as Finite Volume

methods, [BMO 96], [Du 97], [YMAC 99]. The scheme presented here can be

more or less attached to this kind of study.

2. The Finite Volume Box Scheme

In [CoC 98], we introduced a new kind of box-schemes for equations in diver-

gence form. As in box-schemes with �nite-di�erencing interpretation, [Ke 71],

[Co 92], the degrees of freedom are located at the center of the faces of the

mesh. Nevertheless, the discretization is interpreted here as a Finite Element

approximation, allowing to use Finite Element theory for the numerical ana-

lysis. Let us consider the 2D Poisson problem in mixed form with Dirichlet

homogeneous boundary conditions

8

<

:

div p+ f = 0 in 


p�ru = 0 in 


u = 0 onto @


(1)

Suppose given a triangulation T

h

of the domain 
 � R

2

by triangles K. The

number of triangles is NE: The number of internal edges, boundary edges are

NA

i

; NA

b

and the total number of edges is NA = NA

i

+ NA

b

. The Finite

Element spaces that are used are

u-space: The non-conforming Crouzeix-Raviart space with homegeneous boundary

conditions V

h

= P

1

nc;0

, equipped with the mesh dependent norm

ku

h

k

h

= (

X

K2T

h

jru

h

j

2

0;K

)

1=2
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p-space: The div-conforming Raviart-Thomas space of least order Q

h

= RT

0

,

equipped with the continuous norm

kp

h

k

div

= (jp

h

j

2

0;


+ jdiv p

h

j

2

0;


)

1=2

Recall that these spaces are

V

h

= fv

h

=8 K 2 T

h

; v

h

j

K

2 P

1

(K); v

h

is continuous at the middle

of each edge; v

h

= 0 at the middle of each edge on @
g

Q

h

= fq

h

(x; y) 2 H

div

(
) = 8 K 2 T

h

; q

h

(x; y)j

K

2 (P

0

(K))

2

+P

0

(K)

�

x

y

�

g

The scheme reads: �nd (u

h

; p

h

) 2 V

h

�Q

h

such that

8

<

:

hdiv p

h

+ f; 11

K

i = 0 8 K 2 T

h

hp

h

�ru

h

; 11

K

i = 0 8 K 2 T

h

u

h

= 0 on @


(2)

In (2), the number of unknowns is 2NA, since the global degrees of freedom for

u

h

, p

h

are scalars located at the center of the faces of the mesh. The number of

equations is clearly 3NE+NA

b

. A simple count of the faces (the edges) proves

that in fact we have

3NE +NA

b

= 2NA: (3)

Let us mention that coupling these two spaces is not standard in the mixed �nite

element methods, because they do not verify the Babuska-Brezzi condition,

[Ba 71], [Bre 74].

3. Numerical Analysis

3.1. Reformulation as a mixed Petrov-Galerkin method

We consider the following mixed formulation of problem (1): �nd (u; p) 2

H

1

0

�H

div

such that for any (v; q) 2 L

2

� (L

2

)

2

B[(u; p); (v; q)] = (p; q) + (div p; v)� (ru; q) = �(f; v) (4)
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or equivalently

�

(div p+ f; v) = 0 8v 2 L

2

(p�ru; q

)

= 0 8q 2 (L

2

)

2

(5)

Applying the general Babuska theorem [Ba 71] onto mixed formulation we �nd

easily that (5) is a well posed problem, whose solution is (u;ru) , u 2 H

1

0

\H

2

being the unique solution of the original problem (1). The scheme (2) appears

now as a Petrov-Galerkin non conforming approximation of (5). Calling P

0

the

space of constant functions in each triangle, it can be rewritten: �nd (u

h

; p

h

) 2

P

1

nc;0

�RT

0

such that for any (v

h

; q

h

) 2 P

0

� (P

0

)

2

(p

h

; q

h

) + (div p

h

; v

h

)�

X

K2T

h

(ru

h

; q

h

) = �(f; v

h

) (6)

or equivalently

�

(div p

h

+ f; v

h

)

0;


= 0 8v

h

2 P

0

P

K

(p

h

�ru

h

; q

h

)

0;K

= 0 8q

h

2 (P

0

)

2

(7)

Applying now the theory for mixed Petrov-Galerkin approximations, [Ni 82],

[BCM 88], [BMO 96], [Cr 99], we get the following result:

Theorem 1 (i) The scheme (7) does possess an unique solution (u

h

; p

h

) 2

P

1

nc;0

�RT

0

verifying

ku

h

k

h

+ kp

h

k

div

� C jf j

0;


(8)

(ii) We have the error estimate

ku� u

h

k

h

+ kp� p

h

k

div

� Ch jf j

0;


(9)

3.2. Dual scheme

Another mixed form of the Poisson problem linked with the bilinear form

B is dual from (1): �nd (v; q) 2 L

2

� (L

2

)

2

such that for any (u; p) 2 H

1

0

�H

div

B[(u; p); (v; q)] = �(f; u) (10)

or equivalently

�

�(ru; q) = �(f; u) 8u 2 H

1

0

(p; q) + (div p; v) = 0 8p 2 H

div

(11)
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Again by the Babuska theorem, problem (11) does possess an unique solution

(v; q) = (u;ru). The corresponding Petrov-Galerkin scheme is: �nd (v

h

; q

h

) 2

P

0

� (P

0

)

2

such that

�

�(ru

h

; q

h

) = �(f; u

h

) 8u

h

2 P

1

nc;0

(p

h

; q

h

) + (div p

h

; v

h

) = 0 8p

h

2 RT

0

(12)

As precedingly, we get the following result

Theorem 2 (i) The dual scheme (12) does have an unique solution (v

h

; q

h

) 2

P

0

� (P

0

)

2

verifying

jv

h

j

0;


+ jq

h

j

0;


� C jf j

0;


(13)

(ii) We have the error estimate

jv � v

h

j

0;


+ jq � q

h

j

0;


� Ch jf j

0;


(14)

Note that (12) de�nes a non standard cell-centered Finite-Volume scheme for

computing both the unknown and the gradient from the knowledge of the

laplacian.

3.3. Second order error estimate

Using the error estimates for the primal and dual schemes (7), (12), allows

to derive a second order error estimate in the L

2

norm for the unknown u

h

in

(7). The proof uses an Aubin-Nitsche like argument.

Theorem 3 The solution (u

h

; p

h

) of Scheme (7) veri�es the optimal error

estimate

ju� u

h

j

0;


� Ch

2

jf j

0;


(15)

3.4. Further remarks

A natural question is to ask whether there is the link between this scheme

and the family of Finite Element mixed methods, [RT 77], [AB 85], [BDM 85],

[BF 91]. In fact, it can be proved that the gradient part p

h

in (7) coincides with

the mixed gradient �p

h

in [RT 77]. However, the �u

h

part in the mixed method
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is only a P

0

approximation of u. The optimal error estimate is therefore only

of �rst order in the L

2

norm. They are several methods in order to interpolate

a posteriori �u

h

to an higher order approximation, [AB 85]. All these methods

introduce a three variables problem (�u

h

; �p

h

;

�

�

h

), involving a new degree of free-

dom (a Lagrange parameter) �

h

at the interfaces of the mesh. It can be proved,

[Cr 99], that one of these interpolation coincides in fact with the scheme (7).

Moreover, contrary to the standard mixed method in its original formulation,

the degrees of freedom for u

h

and p

h

are decoupled, allowing to solve only an

O(NA) system in u

h

, which is in addition symmetric de�nite positive. We refer

to [CoC 98] for details onto the implementation of (7), and to [Cr 99] for the

proofs of the results described here.

4. Conclusion

Several works are devoted to the a posteriori interpretation of mixed Finite

Element methods as Finite Volume ones for the primal unknown �u

h

. In other

works, they are attempts to compute more easily this unknown, by introducing

additional degrees of freedom. The advantage of the scheme (7) is that it is

basically designed as a true Finite Volume scheme on a single computational

cell, for u

h

and p

h

. In addition, it gives a natural decoupling between the un-

knowns u

h

and p

h

. Moreover, it has an optimal order of accuracy both for u

h

and p

h

, without any post-processing or a posteriori interpretation. Note that

this kind of schemes is not restricted to triangular meshes, or to the dimension

2. We think that the formulation of this scheme as a Petrov-Galerkin method,

combining the advantages of mixed and Finite Volume methods, can be par-

ticularly interesting for computations involving complex uxes. Moreover, it

can be of some help for a better understanding of the link between mixed and

cell-centered Finite Volume methods. Higher order extensions are currently in

progress.

Acknowledgments: The author acknowledges friendly B. Courbet, F. Du-

bois, and A. Debussche, J. Laminie, for stimulating discussions and encourage-

ments.

6



References

[AABM 98] B. Achchab, A. Agouzal, J. Baranger, J-F. Ma

^

�tre, Esti-

mateur d'erreur a posteriori hi�erarchique. Application aux �el�ements

�nis mixtes Numer. Math. 80, 1998, 159-179.

[AB 85] D.N. Arnold, F. Brezzi, Mixed and non-conforming �nite elements

methods: implementation, postprocessing and error estimates, Math.

Model. and Numer. Anal. 19,1, 1985, 7-32.

[Ba 71] I. Babuska, Error-Bounds for Finite Elements Method, Nu-

mer.Math., 16, 322-333.

[BR 87] R.E. Bank, D.J. Rose, Some error estimates for the box method,

SIAM J. Numer. Anal., 24,4, 1987, 777-787.

[BMO 96] J. Baranger, J.F. Ma

^

�tre, F. Oudin, Connection between �nite

volume and mixed �nite element methods, Math. Model. and Numer.

Anal., 30,4, 1996, 445-465.

[BCM 88] C. Bernardi, C. Canuto, Y. Maday, Generalized inf-sup con-

ditions for Chebyshev spectral approximation of the Stokes problem

SIAM J. Numer. Anal., 25,6, 1988, 1237-1271.

[Bre 74] F. Brezzi, On the existence, uniqueness and approximation of saddle-

point problems, arising from lagrangian multipliers R.A.I.R.O. 8,

1974, R-2, 129-151.

[BF 91] F. Brezzi, M. Fortin, Mixed and Hybrid Finite Element Methods,

Springer Series in Comp. Math., 15, Springer Verlag, New-York, 1991.

[BDM 85] F. Brezzi, J. Douglas, L.D. Marini, Two families of Mixed

Finite Element for second order elliptic problems, Numer. Math., 47,

(1985), 217-235.

[CMM 91] Z. Cai, J. Mandel, S. McCormick, The �nite volume element

method for di�usion equations on general triangulations, SIAM J.

Numer. Anal., 28,2, 1991, 392-402.

[CDH 83] F. Casier, H. Deconninck, C. Hirsch, A class of central bidia-

gonal schemes with implicit boundary conditions for the solution of

Euler's equations, AIAA-83-0126 , 1983.

[CM 86] J.J. Chattot, S. Malet, A \box-scheme" for the Euler equations,

Lecture Notes in Math., 1270, Springer-Verlag, 1986, 52-63.

7
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