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ABSTRACT. In this paper, we describe a boz-scheme for convection-diffusion equa-
tions, which is accurate both in the stationary and unstationary regimes and working
in the whole range of Peclet numbers, from pure diffusion (Pe = 0) to pure convec-
tion (Pe = +o0). The principle of the design is described for the onedimensional
case, and we extend it to multidimensions by an ADI technique. Some numerical
results are presented. The underlying application is the numerical simulation of the
convection-diffusion of contaminants in porous media, when sharp contrasts of the
diffusion coefficients occur.
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1. Introduction

In this paper, we introduce a box scheme for the unstationary convection-
diffusion equation, following principles previously introduced by B. Courbet in
[COU 90] for hyperbolic problems. The underlying motivation is to design
a conservative numerical method well suited for convection-diffusion problems
where sharp contrasts in the diffusion occur. This is the case for instance in
contaminants transport problems in hydrogeology. Classicaly, the elliptic equa-
tion for the velocity (Darcy law) is solved by a mixed finite element method.
The contaminants convection-diffusion equations are solved by upwind meth-
ods like finite volumes or discontinuous Galerkin. In such methods, the amount
of artificial diffusion is not controlled. One of the interest of the box scheme
is that one can control explicitely the amount of numerical viscosity present
in the convection-diffusion equation. In addition, the formulation is of mixed
type, and the diffusive flux is reconstructed in function of the primary unknown
by a local formula. The scheme is relevant for Peclet numbers ranging from
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0 (pure diffusion) to +oo (pure convection). After presenting the scheme in
1D, we extend it in 2D by an ADI like technique. Finally we present some
preliminary numerical results on simple test cases in 1D and 2D.

2. The box scheme for the 1D problem
2.1. Design of the scheme

We consider the linear unstationary convection-diffusion equation with con-
stant coefficients in the segment I =]0,1].

Ut + CUy — EUge = f(T), zel
u(z,0) =up(z), wel (1)
u(0,8) =0, u(l,t)=0

Equation (1) is recasted in mixed form with unknowns u(.,t) p(.,t) as

U+ cuy +p. = f(z,t), z€]0;1[,ceR , e>0 (a)
p=—cu, (b) @)
u(z,0) = up(z) = €]0;1]

uw(0,t) =u(l,6) =0, te[0;T]

where cu is the convective flux and p = —eu, is the diffusive flux. Suppose
given a possibly irregular mesh of the interval ]0, 1] with nodes z; = 0 < z2 <

<zy=1 Wecall K;_y/, = [rj_1, zj] a “box” for 2 < j < N. The lenght
of the box K;_y,5 is hj_1/, = xj; — x;j_1. Integrating (2), , (2)p over the box
Kj_1/2 ylelds

° hj1/2 (H w1y () +cfu(z;, t) —u(zj-1, t)]

+[P(l"]; t) —plzj-1, )]_hj 172 (T f)j—1y2 (1) (3)
o hj_1p(I0p)j_1ye (t) = —eu(zy, t) —u(zj1,t)]

b u(mlat)_u(l'Na )

I1° is the projector onto the piecewise constant functions into the boxes. Con-
trary to the finite volume method, where numerical flux formulas are used,
we introduce an upwinding in (3) at the level of the quadrature formula for
approximating the averaged values of (HOu)j_l/2 and (Hop)j_1/2 of u and p in
each box [COU 90, CRO 02a, CRO 02b]
{ (M) _y /5 =~ jo1/2 = (uj +uj-1)/2 + Dyj1/2(uj — uj—1) )
(I°p); 12 = Pj-1/2 = (0 +Pj=1)/2 = Dy j1/2(pj — Pj—1)

Dy j_1/2 and Dy, j_; /> are upwinding coefficients taking different values in each
box K;_y /5. After identification of p;(t) between the two boxes K;_1 /5, Kjt1/2,
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we obtain a semi-discrete problem with N unknows u;(t), and an explicit re-
construction formula for p;(t).
(0 hpsagal = Dy ol0) + hyosyol o+ Doyl 10
= —l(5 = Dpj1/2)e = g5 (8) —u;(2))
{3+ Dpsiye + (00 ~ 1)
+hjt1/2(3 Dp,JJrl/%) 0 flj1y2 (8) + hj_1/2(5 4+ Dy j12) I° flj—1/2 (t)
o pj-1(t) =hj_1pl5 - Dp,] 1721 /2(t)
+hi2l(3 = Dpj1/2)m0; — hf,—] (uj (t) —uj1 (t)

1724 = Dy )M Pl )
* pj (t)—hg 1/20-3% +Dp,] 1/2)Uj—1/2(t)
~hj 1p[(5+ Dypj- 1/2) Sty () —ujm (1)

j—1/2
+hj—l/2(2 +DP7J—1/2)H f\J—l/2 (t)
(o ui(t)=un(t)=0

=

After time-integration by a 6-scheme, the scheme results in a 3-point implicit
compact scheme for the unknown w, which reads

(B — kO™ = (B + k(1 — 6)C)u" (5)

where B, C are the tridiagonal operators defined by :

(¢ Bu= [h;+1/2(— — Dy jiy1/2)(3 + Dy J+1/2)]U1+1
+[hj—1/2(% +1Dm-_1/2)(§ = Dyj-1/2)lvj1

o (Cv= [_(E — Dp7j+1/2)c + —hj-fl/2]vj+1
+(5 = Dpjr1/2)c — 1 fl/z — (5 + Dpjm1y2)e =
+[( +D p,j— 1/2)C+ h ] Uj—1

h —]v;

i—1/2

\ —1/2

In addition, a reconstruction for the diffusive flux p”*! is available in function
of p”, u™, u™t1i.

2.2. Stability, Accuracy

In the particular case of a equally spaced mesh (and with f = 0), we perform
a finite difference analysis with respect to stability and accuracy.

Proposition 1 : (Stability)

Let Dy, = Dy + A(0 — 1).

The scheme is stable in the Von Neumann sense if and only if
(i) DuA+p >0

(it) (DpA + p)(DuDyp + (6 — %)N) >0

where A = ck/h, p = ek/h?.

2 (5 Dm+1/2)(1 Doy jr1y2) + hj—12(5 + Dy j—172)(5 + Dy j—1/2)]v;
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Proposition 2 : (Accuracy)
The equivalent equation of scheme (5), which describes the dissipative and dis-
persive properties, 1s:

Uy + Clg — €Uty = hBsUgy + h? E3tiger + O(h?) (6)

where

9

Ey =c¢D, and Es = c[%(l —\?) = D?] h[Du + (8 — %)/\ -D,] (7)

The upwinding parameter D,, plays a role only in the transient, whereas the
parameter D, plays a role both at the stationary state and in the transient.
In practice we select D,, in order to have no oscillating mode at the stationary
state by, [CRO 02a] (we note the Peclet number Pe = |c|h/2¢)

1 1

D, = 3 sgn(c) max(0,1 — E) (8)

The parameter D, is selected in order to tune the amount of artificial dissipa-
tion, according to (7). Note that the dispersive coefficient is now given by (7).
In practice, we choose D, = § sgn(c) max(0, pe= — p;), With Peg > 1 is some
threshold Peclet number. We have taken Pey = 2.5 in the numerical tests.

2.3. Numerical results

Let us consider the following 1D convection-diffusion equation, where sharp
contrasts in £(x) (up to 10°%) occur

up + cuy — (e(z)ug), =0 =z €]0,1]
u(x,0) = uo(z), = €0,1] (9)
w(0,t)=1, w(l,t)=0

where

e(x) = 107%X0,0.15 + X]0.15:0.250 + 107°X0.25;0.350 + 107" X]0.35,0.45 + X]o.45:1]

We display on Fig. 1-6 the values of u(z,t), p(z,t) = —eu, at times T} = 0.084,
Ty = 0.175, Ty = 0.238, T) = 0.350, Ts = 0.525, Ts = 1.519. The maximum
CFL number is |A\| = 0.7, and the Crank-Nicholson parameter § = 0.5 is
used. We have 101 points (100 boxes). The parameters D, j_1/5, D, j_1/2 are
selected independently in each box according to the preceding remarks.

3. Extension in 2D by the ADI method

A possible extension to the 2D equation u; +c.Vu —eAu = f(z,y,t) can be
obtained on a regular finite difference mesh, by a ADI-like method. If A, and
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A, are respectively the linear box operators associated to the onedimensional
unstationary convection-diffusion problem in z and y direction, the 2D scheme
is in the homogeneous case (f = 0):

(I —kOA)(I — kA ) u" T = (I + k(1 —0)A,) (I +k(1—80)A,)u™  (10)
We solve this problem by the Peaceman and Rachford factorised algorithm :

(1 = kA )um 12 = (I + k(1 - 0)Ay)u" 11
{ (I = kA )umt! = (I + k(1 - 0) Ay )umt!/? (11)

Here we have A, = B;'C,, A, = B;/'Cy, where By, Cy, By, Cy are the 1D
horizontal and vertical operators defined by (5).

To compute u™!, we solve successively the following linear systems with un-
knows uy, w2 uy, utl:

1) Byus = (By + k(1 — 0)Cy)u™

2) (B, — k8C,)u"t/? = Byuy,

3) Byus = (B, + k(1 — 8)Cx)u™t1/?

4) (By — kOCy)u™*t = Byu,.

As an example, we have performed the test proposed in [NOY 89, TRU 01],
which consists of the convection-diffusion of a 2D Gaussian pulse by the equa-
tion uy + ¢Vu — eAu = 0 along the diagonal of the square Q =]0;2[*> from
(®o,y0) = (0.5,0.5) to (zy,yr) = (1.5,1.5). The exact solution, specified on
the boundary, is:

(x — c1t — )? (y_CQt_yO)z]

1
wr1) P e(4t+1)  e(dt+1)

where ¢; = ¢ = 0.8 and € = 0.01. The numerical solution is computed at final
time ty = 1.25 with 6 = 0.5 on the two following meshes:

- a coarse mesh made up of 4096 nodes (64 points on z-axis and 64 points on
y-axis)

- a fine mesh made up of 10201 nodes (101 points on z-axis and 101 points on
y-axis).

The numerical results are presented in the following table, in comparison with
the ones obtained in [TRU 01] by a second order control volume method with
flux limiting, on the same mesh.

g(@,y,t) = ( (12)

Mesh size coarsep,,; | finepos coarsery | finepr
Peak height | 0.1636 0.1660 0.1382 0.1518
err 1.0844e-5 | 9.4819e-7 | 4.9754e-5 | 1.4245e-5

In order to compare the computed solution with the exact one, we use the
height of the Gaussian pulse ¢(1.5,1.5,1.25) = 1/6 ~ 0.1667 and the mesh
dependent error used in [TRU 01]

o \/2 (u(i, En 1@;(( (z')) (), 1)) (13)
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where n, and n, are the number of points in the z and y directions.

4. Conclusion

The introduced box-scheme is a conservative method. It works on an ir-
regular 1D finite-element mesh. It can be seen as a natural generalization
to an irregular mesh of the finite difference so called “compact” schemes, or
of Keller’s box scheme, [KEL 71]. The ADI extension presented here is per-
formed only for convenience, not for design reasons. We intend to explore a
possible extension of the principles presented here to 2D unstructured meshes,
using the method introduced in [COU 98, CRO 00] for elliptic problems, the
aim being to provide alternative schemes to the finite-volume methods with
numerical fluxes, which are difficult to design for diffusive problems.
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Figure 7. The Gaussian pulse at final
time ty = 1.25 for the fine mesh.
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Figure 8. Contour plots of the com-
puted solution at final time ty = 1.25
for the fine mesh.
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