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Abstract. We introduce a pure-streamfunction formulation for the in-
compressible Navier-Stokes equations. The idea is to replace the vorticity
in the vorticity- streamfunction evolution equation by the Laplacianof
the streamfunction. The resulting formulation includes the streamfunc-
tion only, thus no inter-function relations need to invoked. A compact
numerical scheme, which interpolates streamfunction values as well as
its first order derivatives, is presented and analyzed.

1 Introduction

In a previous study [2] we introduced a new methodology for tracking vorticity
dynamics, which is modeled by the incompressible Navier-Stokes equations. Let
Ω ⊆ R2 be a bounded domain with smooth boundary ∂Ω. Recall the vorticity-
velocity formulation of the Navier-Stokes equations[3].

(1.1a) ∂tξ + (u � �)ξ = ν∆ξ in Ω,

(1.1b− c) � � u = 0 in Ω,u = 0 on ∂Ω,

where u = (u, v) is the velocity vector, ξ(x, t) = � × u = ∂xv − ∂yu is the
vorticity field and ν is the viscosity coefficient. Since the flow is incompressible,
there exists a streamfunction, ψ, such that u(x, t) = �⊥ψ =

(
−∂ψ
∂y ,

∂ψ
∂x

)
, hence

the following vorticity-streamfunction relation holds.

(1.2) ∆ψ = ξ, x ∈ Ω, ψ(x, t) =
∂

∂n
ψ(x, t) = 0, x ∈ ∂Ω.

Note that the boundary conditions in (1.2) are due to the no-slip boundary
condition u(x, t) = 0, x ∈ ∂Ω .
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Equations (1.1)-(1.2) contain two boundary conditions for the streamfunction
ψ but no boundary condition for the vorticity ξ. The methodology presented in
[2] is to evolve the vorticity in time according to (1.1), and then project the
vorticity onto ∆(H2

0 (Ω)) = the image of H2
0 (Ω) under ∆. Relation (1.2) is

carried out by applying the Laplacian operator on (1.2), resulting in

(1.3) ∆2ψ = ∆ξ, ψ ∈ H2
0 (Ω).

Indeed, (1.3) is a well posed problem, and can be easily approximated by stan-
dard numerical schemes. Based on [2], Kupferman [5] introduced a central-
difference scheme for the pure-streamfunction formulation.In this paper we con-
struct a pure-compact scheme for the streamfunction formulation. The advantage
of the streamfunction formulation of the Navier-Stokes equations is that there is
no need to invoke inter-functions relations. Our scheme is based on Stephenson’s
[7] scheme for the biharmonic equation, where the values of the streamfunction
ψ and its first-order derivatives ψx and ψy serve as interpolated values. We then
show that the convective term may be approximated by standard finite difference
schemes applied on the first-order derivatives of ψ.

2 Pure-Streamfunction Formulation

Here, we propose a pure-streamfunction formulation. This is obtained by sub-
stituting ξ = ∆ψ and u(x, t) = �⊥ψ in the vorticity-evolution equation (1.1a).
We obtain

(2.1a)
∂(∆ψ)
∂t

+ (�⊥ψ) · �(∆ψ) = ν∆2ψ, x ∈ Ω

with the boundary conditions

(2.1b) ψ(x, t) =
∂

∂n
ψ(x, t) = 0, x ∈ ∂Ω.

Equations (2.1a)-(2.1b) form a well posed problem.
Theorem 2.1:

‖|�ψ(x, t)|‖L2(Ω) ≤ e−2νλt‖|�ψ(x, 0)|‖L2(Ω),

where λ is a positive constant, which depends on Ω.

3 The Numerical Scheme

To simplify the exposition, assume that Ω is a rectangle [a, b]× [c, d]. We lay out
a uniform grid a ≤ x0 < x1 < ... < xN = b, c ≤ y0 < y1 < ... < yM = d. Assume
that ∆x = ∆y = h.

Our approximation in time we apply a Crank-Nicolson scheme to approxi-
mate (2.1a) in time.
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Our approximation in space is based on Stephenson’s [7] scheme for the
biharmonic equation

∆2ψ = f.

Altas et. al. [1] and Kupferman [5] applied Stephenson’s scheme, using a multi-
grid solver. Stephenson’s compact approximation for the biharmonic operator is
the following.

(3.1a)

(∆2
h)
cψi,j = 1

h4 {56ψi,j − 16(ψi+1,j + ψi,j+1 + ψi−1,j + ψi,j−1)
+2(ψi+1,j+1 + ψi−1,j+1 + ψi−1,j−1 + ψi+1,j−1)

+6h[(ψx)i+1,j − (ψx)i−1,j + (ψy)i,j+1 − (ψy)i,j−1]}
= fi,j .

Here, (∆2
h)
cψi,j is a compact second-order approximation for ∆2ψ. We have also

to relate ψx and ψy to ψ. This is done via the following fourth-order compact
schemes.

(3.1b) h(ψx)i,j =
3
4
(ψi+1,j − ψi−1,j) − h

4
[(ψx)i+1,j + (ψx)i−1,j ]

(3.1c) h(ψy)i,j =
3
4
(ψi,j+1 − ψi,j−1) − h

4
[(ψy)i,j+1 + (ψy)i,j−1].

Equations (3.1a-c) form a second order compact scheme for ∆2ψ, involves values
of ψ, ψx and ψy at (i, j) and at its eight nearest neighbors, Thus, the scheme
is compact. The approximation above is applied at any interior point 1 ≤ i ≤
N − 1, 1 ≤ j ≤ M − 1. On the boundary i = 0, N or j = 0,M ψ, ψx, ψy are
determined from the boundary conditions (2.1b).

The convective term (�⊥ψ) · �(∆ψ) is approximated as follows.

(3.2a) (�⊥ψ)i,j = (−(ψy)i,j , (ψx)i,j).

No further approximation is needed, since ψx and ψy are part of the unknowns
in our discretization. Now,

(3.2b) �(∆ψ)i,j = ((∆ψx)i,j , (∆ψy)i,j) == ((∆hψx)i,j , (∆hψy)i,j) +O(h2, h2),

where ∆hgi,j is the standard approximation for the Laplacian. Note that the
above discretization is well defined for any interior point 1 ≤ i ≤ N − 1, 1 ≤ j ≤
M − 1.

The Laplacian of ψ, appearing in the LHS of (3.1a-b), is approximated
by ∆hψ, where ∆hψ is the standard Laplacian approximation.. The resulting
scheme has the following form.
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Combining (3.1)-(3.2), we obtain the following scheme.

(3.3a)

(∆hψi,j)
n+1/2−(∆hψi,j)

n

∆t/2 =
−(−(ψny )i,j , (ψnx )i,j) · ((∆hψ

n
x )i,j , (∆hψ

n
y )i,j)

+ ν
2 [(∆2

h)
cψ

n+1/2
i,j + (∆2

h)
cψni.j ]

(3.3b)

(∆hψi,j)
n+1−(∆hψi,j)

n

∆t =
−(−(ψn+1/2

y )i,j , (ψ
n+1/2
x )i,j) · ((∆hψ

n+1/2
x )i,j , (∆hψ

n+1/2
y )i,j)

+ ν
2 [(∆2

h)
cψn+1

i,j + (∆2
h)
cψni,j ],

where (∆2
h)
c is defined in (3.1a− c).

4 Stability

4.1 Introduction

This section is devoted to the study of stability and convergence of different
schemes like (3.3a-3.3b), when applied to the 1d linear model equation in [0, 1]

(4.1) ψxxt = aψxxx + νψxxxx,

where a ∈ R, ν > 0. Let us introduce the following finite-difference operators



δ2xψi = ψi+1−2ψi+ψi−1

h2 (4.2 − a)
δ4x(ψ) = 1

h4 {12(2ψi − ψi+1 − ψi−1) + 6h[(ψx)i+1 − (ψx)i−1]}, (4.2 − b)
ψx,i = 3

4h (ψi+1 − ψi−1) − 1
4 [ψx,i+1 + ψx,i−1] (4.2 − c)

Notice that we adopt, as in [7] the notation ψx for the difference operator (4.2-c),
which should not be confused with the operator ∂x since it operates on discrete
functions. Notice also that we adopt only for convenience the notation δ4x, but
we do not have δ4x = (δ2x)

2.

4.2 Stability of the Predictor-Corrector Scheme

We look now more closely at the time scheme used in our Navier-Stokes schemes.
In the context of the model equation (4.1), this scheme reads

(4.3)

{
δ2xψ

n+1/2−δ2xψn

∆t/2 = aδ2xψ
n
x + ν

2 (δ4xψn + δ4xψ
n+1/2)

δ2xψ
n+1−δ2xψn

∆t = aδ2xψ
n+1/2
x + ν

2 (δ4xψ
n+1 + δ4xψ

n)

(4.3) is a predictor corrector scheme in time, which handles explicitely the con-
vective term, and implicitely the viscous term (Crank-Nicolson). The discrete
spatial operator are given in (4.2). We denote

(4.4) λ =
a∆t

h
; µ =

ν∆t

h2
.



A Compact Scheme for the Streamfunction Formulation 813

Proposition 4.1 The difference scheme (4.3) is stable in the Von Neumann
sense under the sufficient condition

(4.5) |λ| ≤ min(2
√
µ,

√
8

3
)

Remark 4.2b: Note that for an Euler time stepping scheme, the stability con-
dition is 6 ν∆th2 + a2∆t

2ν ≤ 1.

4.3 Convergence of the Spatially Semi-discrete Scheme

In the next theorem, we show the spatial second order accuracy of the time
continuous version of scheme (4.3), when applied to the linear equation (4.1) on
[0, 2π[ in the periodic case.
Define h = 2π/N, xi = ih, 0 ≤ i ≤ N − 1. We call l2h the space of N periodic
sequences. For u ∈ l2h, the scalar product is (u, v)h = h

∑N−1
i=0 uivi and the norm

|u|h = (h
∑N−1

i=0 |ui|2)1/2. For ψ̃ ∈ l2h, the spatial discrete operators δ2ψ̃, δ4ψ̃, ψ̃x
are defined in (4.2).

Theorem 4.1 Let ψ(x, t) be a smooth solution of (4.1), such that ψ(., t) is pe-
riodic on [0, 2π], and ψ(0, t) = ψ(2π, t) = ∂xψ(0, t) = ∂xψ(2π, t) = 0. If ψ̃(x, t)
is the solution of

(4.6)
∂

∂t
δ2xψ̃ = aδ2x(ψ̃x) + νδ4x(ψ̃).

with initial datum ψ̃i(0) = ψ0(ih), 0 ≤ i ≤ N − 1. Then, the error e = ψ̃ − ψ
satisfies

|δ+x e|h ≤ Ch2,

where δ+x is the forwarded difference operator (δ+x e)i = ei+1−ei

h .

5 Numerical Results

We present numerical results for a driven cavity with ν = 1/400. Here the
domain is Ω = [0, 1] × [0, 1] and the fluid is driven in the x−direction on the
top section of the boundary (y = 1). I Table 1 we show maxψ, (x̄, ȳ), where
(x̄, ȳ) is the point where maxψ occurs, and minψ. Note that the highest value of
the streamfunction at the latest time step is 0.1136. Here the maximum occurs
at (x̄, ȳ) = (0.5521, 0.6042), and the minimal value of the streamfunction is
−6.498(−4). In [4] maxψ = 0.1139 occurs at (0.5547, 0.6055), and the minimal
value of the streamfunction is −6.424(−4). Figure 1a displays streamfunction
contours at t = 60, using a 97 × 97 mesh. In Figure 2a we present velocity
components u(0.5, y) and v(x, 0.5) (solid lines) at T = 60 compared with [4]
(marked by ’0’), for ν = 1/400. Note that the match between the results is
excellent.
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time quantity 65 × 65 81 × 81 97 × 97
10 maxψ 0.1053 0.1057 0.1059

(x̄, ȳ) (0.5781, 0.6250) (0.5750, 0.6250) (0.5833, 0.6354)
minψ −4.786(−4) −4.758(−4) −4.749(−4)

20 maxψ 0.1124 0.1128 0.1130
(x̄, ȳ) (0.5625, 0.6094) (0.5625, 0.6125) (0.5521, 0.6042)
minψ −6.333(−4) −6.371(−4) −6.361(−4)

40 maxψ 0.1131 0.1134 0.1136
(x̄, ȳ) (0.5625, 0.6094) (0.5500, 0.6000) (0.5521, 0.6042)
minψ −6.513(−4) −6.5148(−4) −6.498(−4)

60 maxψ 0.1131 0.01134 0.1136
(x̄, ȳ) (0.5625, 0.6094) (0.5500, 0.6000) (0.5521, 0.6042)
minψ −6.514(−4) −6.5155(−4) −6.498(−4)

Table 1: Streamfunction Formulation: Compact scheme for the driven cavity
problem, Re = 400. Ghia et. al. results: maxψ = 0.1139 at (0.5547, 0.6055),

minψ = −6.424(−4).

In Table 2 we display results for ν = 1/5000. At the latest time level on
the finest grid the maximal value of ψ is 0.1160, compared to 0.11897 in [4].
The location of the maximal value is (x̄, ȳ) = (0.5104, 0.5417), compared to
(0.5117, 0.5352) in [4]. The minimum value of the streamfunction is −0.0029,
where the value −0.0031 was found in [4]. Figure 1b displays streamfunction
contours at t = 400. In Figure 2b we present velocity components u(0.5, y) and
v(x, 0.5) (solid lines) at T = 400 compared with [4], for ν = 1/5000. Note the
excellent match in this case too.

time quantity 81 × 81 97 × 97
120 maxψ 0.1060 0.1068

(x̄, ȳ) (0.5125, 0.5375) (0.5104, 0.5417)
minψ −0.0028 −0.0028

200 maxψ 0.1117 0.1127
(x̄, ȳ) (0.5125, 0.5375) (0.5104, 0.5312)
minψ −0.0028 −0.0029

280 maxψ 0.1139 0.1150
(x̄, ȳ) (0.5125, 0.5375) (0.5104, 0.5417)
minψ −0.0028 −0.0029

400 maxψ 0.1149 0.1160
(x̄, ȳ) (0.5125, 0.5375) (0.5104, 0.5417)
minψ −0.0028 −0.0029

Table 2: Streamfunction Formulation: Compact scheme for the driven cavity
problem, Re = 5000 Ghia et. al. results: maxψ = 0.11897 at (0.5117, 0.5352),

minψ = −0.0031.

We also investigated the behavor of the flow for ν = 1/7500 and ν = 1/10000.
For ν = 1/7500 at T = 560 with a 97 × 97 mesh. Figure 3a displays stream-
function contours and Figure 4a represents velocity components u(0.5, y) and
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v(x, 0.5) (solid lines) compared with [4]. The match is excellent. For ν = 1/10000
at T = 500 with a 97 × 97 mesh- the maximal value of ψ is 0.1190, compared
to 0.1197 in [4]. The location of the maximal value is (x̄, ȳ) = (0.5104, 0.5312),
compared to (0.5117, 0.5333) in [4]. Figure 3b displays streamfunction contours
and Figure 4b represents velocity components u(0.5, y) and v(x, 0.5) (solid lines)
compared with [4]. Note again that the match is excellent. However, a steady
state have not been reached, as we can observe from Figure 5b, which repre-
sents the max of the streamfunction from T=400 to T = 500, ν = 1/10000. A
similar plot- Figure 5a- shows that for ν = 1/7500 the same quantity grows
monotonically towards a steady-state, while for ν = 1/10000 we observe that it
grows non-monotonically. A similar phenomena was observed for ν = 1/8500, in
agreement with [6] and [5].
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Fig. 1. Driven Cavity for Re = 400, 5000 : Streamfunction Contours
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Fig. 3. Driven Cavity for Re = 7500, 10000 : Streamfunction Contours,
Re = 7500: max ψ = 0.1175, Ghia 0.11998; location is (0.5104, 0.5312),
Ghia (0.5117, 0.5322); minψ = −0.0030, Ghia = −0.0033. Re = 10000: max
ψ = 0.1190, Ghia 0.1197; location is (0.5104, 0.5312), Ghia (0.5117, 0.5333);
minψ = −0.0033, Ghia = −0.0034.
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Fig. 4. Driven Cavity for Re = 7500, 10000 : Velocity Components. [4]’s results
are marked by ’0’
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Fig. 5. Driven Cavity for Re = 7500, 10000 : Max Streamfunction, T=400 to
500.
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