A Compact Scheme for the Streamfunction Formulation of Navier-Stokes Equations

D. Fishelov¹, M. Ben-Artzi², and J.-P. Croisille³

Tel-Aviv Academic College for Engineering 218 Bnei-Efraim St., Tel-Aviv 69107 and Beit Berl College daliaf@post.tau.ac.il ² Institute of Mathematics The Hebrew University, Jerusalem 91904, Israel mbartzi@math.huji.ac.il ³ Department of Mathematics University of Metz, Metz, France croisil@poncelet.univ-metz.fr

Abstract. We introduce a pure-streamfunction formulation for the incompressible Navier-Stokes equations. The idea is to replace the vorticity in the vorticity- streamfunction evolution equation by the Laplacian of the streamfunction. The resulting formulation includes the streamfunction only, thus no inter-function relations need to invoked. A compact numerical scheme, which interpolates streamfunction values as well as its first order derivatives, is presented and analyzed.

1 Introduction

In a previous study [2] we introduced a new methodology for tracking vorticity dynamics, which is modeled by the incompressible Navier-Stokes equations. Let $\Omega \subseteq R^2$ be a bounded domain with smooth boundary $\partial \Omega$. Recall the vorticity-velocity formulation of the Navier-Stokes equations[3].

$$(1.1a) \partial_t \xi + (\mathbf{u} \cdot \nabla) \xi = \nu \Delta \xi \quad \text{in } \Omega,$$

$$(1.1b - c) \qquad \forall \mathbf{u} = \mathbf{0} \text{ in } \Omega, \mathbf{u} = \mathbf{0} \text{ on } \partial\Omega,$$

where $\mathbf{u}=(u,v)$ is the velocity vector, $\xi(\mathbf{x},t)=\nabla\times\mathbf{u}=\partial_xv-\partial_yu$ is the vorticity field and ν is the viscosity coefficient. Since the flow is incompressible, there exists a streamfunction, ψ , such that $\mathbf{u}(\mathbf{x},t)=\nabla^{\perp}\psi=\left(-\frac{\partial\psi}{\partial y},\,\frac{\partial\psi}{\partial x}\right)$, hence the following vorticity-streamfunction relation holds.

(1.2)
$$\Delta \psi = \xi, \quad \mathbf{x} \in \Omega, \quad \psi(\mathbf{x}, t) = \frac{\partial}{\partial n} \psi(\mathbf{x}, t) = 0, \ \mathbf{x} \in \partial \Omega.$$

Note that the boundary conditions in (1.2) are due to the no-slip boundary condition $\mathbf{u}(\mathbf{x},t) = \mathbf{0}, \ \mathbf{x} \in \partial \Omega$.

V. Kumar et al. (Eds.): ICCSA 2003, LNCS 2667, pp. 809-817, 2003.

[©] Springer-Verlag Berlin Heidelberg 2003

810

Equations (1.1)-(1.2) contain two boundary conditions for the streamfunction ψ but no boundary condition for the vorticity ξ . The methodology presented in [2] is to evolve the vorticity in time according to (1.1), and then project the vorticity onto $\Delta(H_0^2(\Omega)) =$ the image of $H_0^2(\Omega)$ under Δ . Relation (1.2) is carried out by applying the Laplacian operator on (1.2), resulting in

(1.3)
$$\Delta^2 \psi = \Delta \xi, \ \psi \in H_0^2(\Omega).$$

Indeed, (1.3) is a well posed problem, and can be easily approximated by standard numerical schemes. Based on [2], Kupferman [5] introduced a central-difference scheme for the pure-streamfunction formulation. In this paper we construct a pure-compact scheme for the streamfunction formulation. The advantage of the streamfunction formulation of the Navier-Stokes equations is that there is no need to invoke inter-functions relations. Our scheme is based on Stephenson's [7] scheme for the biharmonic equation, where the values of the streamfunction ψ and its first-order derivatives ψ_x and ψ_y serve as interpolated values. We then show that the convective term may be approximated by standard finite difference schemes applied on the first-order derivatives of ψ .

2 Pure-Streamfunction Formulation

Here, we propose a pure-streamfunction formulation. This is obtained by substituting $\xi = \Delta \psi$ and $\mathbf{u}(\mathbf{x}, t) = \nabla^{\perp} \psi$ in the vorticity-evolution equation (1.1a). We obtain

(2.1a)
$$\frac{\partial(\Delta\psi)}{\partial t} + (\nabla^{\perp}\psi) \cdot \nabla(\Delta\psi) = \nu \Delta^2\psi, \ \mathbf{x} \in \Omega$$

with the boundary conditions

(2.1b)
$$\psi(\mathbf{x},t) = \frac{\partial}{\partial n} \psi(\mathbf{x},t) = 0, \ \mathbf{x} \in \partial \Omega.$$

Equations (2.1a)-(2.1b) form a well posed problem.

Theorem 2.1:

$$\||\nabla \psi(\mathbf{x},t)|\|_{L^2(\Omega)} \le e^{-2\nu\lambda t} \||\nabla \psi(\mathbf{x},0)|\|_{L^2(\Omega)},$$

where λ is a positive constant, which depends on Ω .

3 The Numerical Scheme

To simplify the exposition, assume that Ω is a rectangle $[a,b] \times [c,d]$. We lay out a uniform grid $a \le x_0 < x_1 < ... < x_N = b, c \le y_0 < y_1 < ... < y_M = d$. Assume that $\Delta x = \Delta y = h$.

Our approximation in time we apply a Crank-Nicolson scheme to approximate (2.1a) in time.

Our approximation in space is based on Stephenson's [7] scheme for the biharmonic equation

$$\Delta^2 \psi = f$$
.

Altas et. al. [1] and Kupferman [5] applied Stephenson's scheme, using a multigrid solver. Stephenson's compact approximation for the biharmonic operator is the following.

$$(3.1a) (3.1a) (3.1a) (3.1a) (3.1a) (3.1a)$$

Here, $(\Delta_h^2)^c \psi_{i,j}$ is a compact second-order approximation for $\Delta^2 \psi$. We have also to relate ψ_x and ψ_y to ψ . This is done via the following fourth-order compact schemes.

(3.1b)
$$h(\psi_x)_{i,j} = \frac{3}{4}(\psi_{i+1,j} - \psi_{i-1,j}) - \frac{h}{4}[(\psi_x)_{i+1,j} + (\psi_x)_{i-1,j}]$$

(3.1c)
$$h(\psi_y)_{i,j} = \frac{3}{4}(\psi_{i,j+1} - \psi_{i,j-1}) - \frac{h}{4}[(\psi_y)_{i,j+1} + (\psi_y)_{i,j-1}].$$

Equations (3.1a-c) form a second order compact scheme for $\Delta^2 \psi$, involves values of ψ, ψ_x and ψ_y at (i,j) and at its eight nearest neighbors, Thus, the scheme is compact. The approximation above is applied at any interior point $1 \leq i \leq N-1, 1 \leq j \leq M-1$. On the boundary i=0,N or j=0,M ψ,ψ_x,ψ_y are determined from the boundary conditions (2.1b).

The convective term $(\nabla^{\perp}\psi)\cdot\nabla(\Delta\psi)$ is approximated as follows.

(3.2a)
$$(\nabla^{\perp} \psi)_{i,j} = (-(\psi_y)_{i,j}, (\psi_x)_{i,j}).$$

No further approximation is needed, since ψ_x and ψ_y are part of the unknowns in our discretization. Now,

$$(3.2b) \ \nabla(\Delta\psi)_{i,j} = ((\Delta\psi_x)_{i,j}, (\Delta\psi_y)_{i,j}) = = ((\Delta_h\psi_x)_{i,j}, (\Delta_h\psi_y)_{i,j}) + O(h^2, h^2),$$

where $\Delta_h g_{i,j}$ is the standard approximation for the Laplacian. Note that the above discretization is well defined for any interior point $1 \le i \le N-1, 1 \le j \le M-1$.

The Laplacian of ψ , appearing in the LHS of (3.1a-b), is approximated by $\Delta_h \psi$, where $\Delta_h \psi$ is the standard Laplacian approximation. The resulting scheme has the following form.

812

Combining (3.1)-(3.2), we obtain the following scheme.

$$(3.3a) \qquad \frac{(\Delta_h \psi_{i,j})^{n+1/2} - (\Delta_h \psi_{i,j})^n}{\Delta t/2} = \\ -(-(\psi_y^n)_{i,j}, (\psi_x^n)_{i,j}) \cdot ((\Delta_h \psi_x^n)_{i,j}, (\Delta_h \psi_y^n)_{i,j}) \\ + \frac{\nu}{2} [(\Delta_h^2)^c \psi_{i,j}^{n+1/2} + (\Delta_h^2)^c \psi_{i,j}^n]$$

$$(3.3b) \qquad \frac{(\Delta_h \psi_{i,j})^{n+1} - (\Delta_h \psi_{i,j})^n}{\Delta t} = \\ -(-(\psi_y^{n+1/2})_{i,j}, (\psi_x^{n+1/2})_{i,j}) \cdot ((\Delta_h \psi_x^{n+1/2})_{i,j}, (\Delta_h \psi_y^{n+1/2})_{i,j}) \\ + \frac{\nu}{2} [(\Delta_h^2)^c \psi_{i,j}^{n+1} + (\Delta_h^2)^c \psi_{i,j}^n],$$

where $(\Delta_h^2)^c$ is defined in (3.1a-c).

4 Stability

4.1 Introduction

This section is devoted to the study of stability and convergence of different schemes like (3.3a-3.3b), when applied to the 1d linear model equation in [0,1]

$$\psi_{xxt} = a\psi_{xxx} + \nu\psi_{xxxx},$$

where $a \in \mathbb{R}$, $\nu > 0$. Let us introduce the following finite-difference operators

$$\begin{cases} \delta_x^2 \psi_i = \frac{\psi_{i+1} - 2\psi_i + \psi_{i-1}}{h^2} & (4.2 - a) \\ \delta_x^4 (\psi) = \frac{1}{h^4} \{ 12(2\psi_i - \psi_{i+1} - \psi_{i-1}) + 6h[(\psi_x)_{i+1} - (\psi_x)_{i-1}] \}, & (4.2 - b) \\ \psi_{x,i} = \frac{3}{4h} (\psi_{i+1} - \psi_{i-1}) - \frac{1}{4} [\psi_{x,i+1} + \psi_{x,i-1}] & (4.2 - c) \end{cases}$$

Notice that we adopt, as in [7] the notation ψ_x for the difference operator (4.2-c), which should not be confused with the operator ∂_x since it operates on discrete functions. Notice also that we adopt only for convenience the notation δ_x^4 , but we do not have $\delta_x^4 = (\delta_x^2)^2$.

4.2 Stability of the Predictor-Corrector Scheme

We look now more closely at the time scheme used in our Navier-Stokes schemes. In the context of the model equation (4.1), this scheme reads

$$\begin{cases}
\frac{\delta_x^2 \psi^{n+1/2} - \delta_x^2 \psi^n}{\Delta t/2} = a \delta_x^2 \psi_x^n + \frac{\nu}{2} (\delta_x^4 \psi^n + \delta_x^4 \psi^{n+1/2}) \\
\frac{\delta_x^2 \psi^{n+1} - \delta_x^2 \psi^n}{\Delta t} = a \delta_x^2 \psi_x^{n+1/2} + \frac{\nu}{2} (\delta_x^4 \psi^{n+1} + \delta_x^4 \psi^n)
\end{cases}$$

(4.3) is a predictor corrector scheme in time, which handles explicitly the convective term, and implicitly the viscous term (Crank-Nicolson). The discrete spatial operator are given in (4.2). We denote

(4.4)
$$\lambda = \frac{a\Delta t}{h} \quad ; \quad \mu = \frac{\nu \Delta t}{h^2}.$$

Proposition 4.1 The difference scheme (4.3) is stable in the Von Neumann sense under the sufficient condition

$$(4.5) |\lambda| \le \min(2\sqrt{\mu}, \frac{\sqrt{8}}{3})$$

Remark 4.2b: Note that for an Euler time stepping scheme, the stability condition is $6\frac{\nu\Delta t}{h^2} + \frac{a^2\Delta t}{2\nu} \leq 1$.

4.3 Convergence of the Spatially Semi-discrete Scheme

In the next theorem, we show the spatial second order accuracy of the time continuous version of scheme (4.3), when applied to the linear equation (4.1) on $[0, 2\pi[$ in the periodic case.

Define $h=2\pi/N, x_i=ih, 0 \leq i \leq N-1$. We call l_h^2 the space of N periodic sequences. For $u \in l_h^2$, the scalar product is $(u,v)_h=h\sum_{i=0}^{N-1}u_iv_i$ and the norm $|u|_h=(h\sum_{i=0}^{N-1}|u_i|^2)^{1/2}$. For $\tilde{\psi}\in l_h^2$, the spatial discrete operators $\delta^2\tilde{\psi}$, $\delta^4\tilde{\psi}$, $\tilde{\psi}_x$ are defined in (4.2).

Theorem 4.1 Let $\psi(x,t)$ be a smooth solution of (4.1), such that $\psi(.,t)$ is periodic on $[0,2\pi]$, and $\psi(0,t) = \psi(2\pi,t) = \partial_x \psi(0,t) = \partial_x \psi(2\pi,t) = 0$. If $\tilde{\psi}(x,t)$ is the solution of

(4.6)
$$\frac{\partial}{\partial t} \delta_x^2 \tilde{\psi} = a \delta_x^2 (\tilde{\psi}_x) + \nu \delta_x^4 (\tilde{\psi}).$$

with initial datum $\tilde{\psi}_i(0) = \psi_0(ih), \ 0 \le i \le N-1$. Then, the error $e = \tilde{\psi} - \psi$ satisfies

$$|\delta_x^+ e|_h \le Ch^2$$
,

where δ_x^+ is the forwarded difference operator $(\delta_x^+ e)_i = \frac{e_{i+1} - e_i}{h}$.

5 Numerical Results

We present numerical results for a driven cavity with $\nu=1/400$. Here the domain is $\Omega=[0,1]\times[0,1]$ and the fluid is driven in the x-direction on the top section of the boundary (y=1). I Table 1 we show $\max\psi$, $(\bar x,\bar y)$, where $(\bar x,\bar y)$ is the point where $\max\psi$ occurs, and $\min\psi$. Note that the highest value of the streamfunction at the latest time step is 0.1136. Here the maximum occurs at $(\bar x,\bar y)=(0.5521,0.6042)$, and the minimal value of the streamfunction is -6.498(-4). In [4] $\max\psi=0.1139$ occurs at (0.5547,0.6055), and the minimal value of the streamfunction is -6.424(-4). Figure 1a displays streamfunction contours at t=60, using a 97×97 mesh. In Figure 2a we present velocity components u(0.5,y) and v(x,0.5) (solid lines) at T=60 compared with [4] (marked by '0'), for $\nu=1/400$. Note that the match between the results is excellent.

timo	quantity	65×65	81×81	97×97
ume	quantity	09 × 09	01 × 01	91 × 91
10	$\max \psi$	0.1053	0.1057	0.1059
	(\bar{x},\bar{y})	(0.5781, 0.6250)	(0.5750, 0.6250)	(0.5833, 0.6354)
	$\min \psi$	-4.786(-4)	-4.758(-4)	-4.749(-4)
20	$\max \psi$	0.1124	0.1128	0.1130
	(\bar{x},\bar{y})	(0.5625, 0.6094)	(0.5625, 0.6125)	(0.5521, 0.6042)
	$\min \psi$	-6.333(-4)	-6.371(-4)	-6.361(-4)
40	$\max \psi$	0.1131	0.1134	0.1136
	(\bar{x},\bar{y})	(0.5625, 0.6094)	(0.5500, 0.6000)	(0.5521, 0.6042)
	$\min \psi$	-6.513(-4)	-6.5148(-4)	-6.498(-4)
60	$\max \psi$	0.1131	0.01134	0.1136
	(\bar{x},\bar{y})	(0.5625, 0.6094)	(0.5500, 0.6000)	(0.5521, 0.6042)
	$\min \psi$	-6.514(-4)	-6.5155(-4)	-6.498(-4)

Table 1: Streamfunction Formulation: Compact scheme for the driven cavity problem, Re = 400. Ghia et. al. results: $\max \psi = 0.1139$ at (0.5547, 0.6055), $\min \psi = -6.424(-4)$.

In Table 2 we display results for $\nu=1/5000$. At the latest time level on the finest grid the maximal value of ψ is 0.1160, compared to 0.11897 in [4]. The location of the maximal value is $(\bar{x}, \bar{y}) = (0.5104, 0.5417)$, compared to (0.5117, 0.5352) in [4]. The minimum value of the streamfunction is -0.0029, where the value -0.0031 was found in [4]. Figure 1b displays streamfunction contours at t=400. In Figure 2b we present velocity components u(0.5, y) and v(x, 0.5) (solid lines) at T=400 compared with [4], for $\nu=1/5000$. Note the excellent match in this case too.

, •	1.1	01 01	0707
time	quantity	81×81	97×97
120	$\max \psi$	0.1060	0.1068
	(\bar{x},\bar{y})	(0.5125, 0.5375)	(0.5104, 0.5417)
	$\min \psi$	-0.0028	-0.0028
200	$\max \psi$	0.1117	0.1127
	(\bar{x},\bar{y})	(0.5125, 0.5375)	(0.5104, 0.5312)
	$\min \psi$	-0.0028	-0.0029
280	$\max \psi$	0.1139	0.1150
	(\bar{x},\bar{y})	(0.5125, 0.5375)	(0.5104, 0.5417)
	$\min \psi$	-0.0028	-0.0029
400	$\max \psi$	0.1149	0.1160
	(\bar{x},\bar{y})	(0.5125, 0.5375)	(0.5104, 0.5417)
	$\min \psi$	-0.0028	-0.0029

Table 2: Streamfunction Formulation: Compact scheme for the driven cavity problem, Re = 5000 Ghia et. al. results: $\max \psi = 0.11897$ at (0.5117, 0.5352), $\min \psi = -0.0031$.

We also investigated the behavor of the flow for $\nu = 1/7500$ and $\nu = 1/10000$. For $\nu = 1/7500$ at T = 560 with a 97×97 mesh. Figure 3a displays streamfunction contours and Figure 4a represents velocity components u(0.5, y) and

v(x,0.5) (solid lines) compared with [4]. The match is excellent. For $\nu=1/10000$ at T=500 with a 97 × 97 mesh- the maximal value of ψ is 0.1190, compared to 0.1197 in [4]. The location of the maximal value is $(\bar{x},\bar{y})=(0.5104,0.5312)$, compared to (0.5117,0.5333) in [4]. Figure 3b displays streamfunction contours and Figure 4b represents velocity components u(0.5,y) and v(x,0.5) (solid lines) compared with [4]. Note again that the match is excellent. However, a steady state have not been reached, as we can observe from Figure 5b, which represents the max of the streamfunction from T=400 to $T=500, \nu=1/10000$. A similar plot- Figure 5a- shows that for $\nu=1/7500$ the same quantity grows monotonically towards a steady-state, while for $\nu=1/10000$ we observe that it grows non-monotonically. A similar phenomena was observed for $\nu=1/8500$, in agreement with [6] and [5].

Fig. 1. Driven Cavity for Re = 400,5000: Streamfunction Contours

References

- I. Altas, J. Dym, M. M. Gupta, and R. P Manohar. Mutigrid solution of automatically generated high-order discretizations for the biharmonic equation. SIAM J.Sci. Comput., 19:1575–1585, 1998.
- [2] M. Ben-Artzi, D. Fishelov, and S. Trachtenberg. Vorticity dynamics and numerical resolution of navier-stokes equations. *Math. Model. Numer. Anal.*, 35(2):313–330, 2001.
- [3] A. J. Chorin and J. E. Marsden. A Mathematical Introduction to Fluid Mechanics. Springer-Verlag, 2-nd edition, 1990.
- [4] U. Ghia, K. N. Ghia, and C. T. Shin. High-re solutions for incompressible flow using the navier-stokes equations and a multigrid method. J. Comp. Phys., 48:387–411, 1982.

Fig. 2. Driven Cavity for Re = 400,5000: Velocity Components. [4]'s results are marked by '0'

Fig. 3. Driven Cavity for Re=7500,10000: Streamfunction Contours, Re=7500: max $\psi=0.1175,$ Ghia 0.11998; location is (0.5104,0.5312), Ghia (0.5117,0.5322); min $\psi=-0.0030,$ Ghia = -0.0033. Re=10000: max $\psi=0.1190,$ Ghia 0.1197; location is (0.5104,0.5312), Ghia (0.5117,0.5333); min $\psi=-0.0033,$ Ghia = -0.0034.

Fig. 4. Driven Cavity for Re = 7500, 10000: Velocity Components. [4]'s results are marked by '0'

Fig. 5. Driven Cavity for Re=7500,10000: Max Streamfunction, T=400 to 500.

- [5] R. Kupferman. A central-difference scheme for a pure streamfunction formulation of incompressible viscous flow. SIAM J. Sci. Comput., 23, No. 1:1–18, 2001.
- [6] T. W. Pan and R. Glowinski. A projection/wave-like equation method for the numerical simulation of incompressible viscous fluid flow modeled by the navierstokes equations. *Comput. Fluid Dynamics*, 9, 2000.
- [7] J. W. Stephenson. Single cell discretizations of order two and four for biharmonic problems. *J. Comp. Phys.*, 55:65–80, 1984.