
An embedded compact scheme for biharmonic
problems in irregular domains

Matania Ben-Artzi, Jean-Pierre Croisille and Dalia Fishelov

Abstract In [2] a Cartesian embedded finite difference scheme for biharmonic
problems has been introduced. The design of the scheme relies on a 19− dimen-
sional polynomial space. In this paper, we show how to simplify the implementation
by introducing a directional decomposition of this space. The boundary is handled
via a level-set approach. Numerical results for non convex domains demonstrate the
fourth order accuracy of the scheme.

1 Introduction

Let Ω ⊆ R2 be a convex domain. The problem considered here is the biharmonic
problem subject to Dirichlet boundary conditions:{

∆ 2ψ(x) = f , x ∈Ω ,

ψ = ∂ψ

∂n = 0, x ∈ ∂Ω .
(1)

Our purpose is to calculate a high order accurate approximation to (1), by embed-
ding Ω in a Cartesian grid. The main idea of the scheme was described in [2]. Here
we extend and elaborate on the presentation in [4, Chap.11].
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We consider the convex domain Ω as embedded in a large uniform grid of mesh
size h. A grid point is a point Qi, j = (ih, jh) for i, j ∈ Z. Following common ter-
minology, we use the term interior nodes for the grid points that lie inside Ω . We
denote by Ωh the ensemble of these nodes, namely:

Ωh =
{

Qi, j ∈Ω , i, j ∈ Z
}
. (2)

We split the set Ωh into two sets, Ωh = Ω calc
h ∪Ω

edge
h , as follows:

• Ω calc
h = the set of calculated nodes.

This set consists of those nodes that are located “well within” Ω , namely suf-
ficiently far from the boundary ∂Ω . In particular, if all diagonally neighboring
nodes Qi±1, j±1 are in Ωh then Qi, j ∈ Ω calc

h . Remark that by convexity all eight
neighboring nodes are then in Ωh. However, it should be emphasized that even
if not all its neighboring nodes are in Ωh, a node Qi, j can still be considered as
“calculated” if it is not “too close” to the boundary, as we explain below.
The approximate values at the calculated nodes are obtained by the pro-
posed scheme.

• Ω
edge
h = the set of edge nodes.

This set consists of those nodes (interior to Ω ) that are located “too close” to
the boundary ∂Ω . They differ from the calculated nodes in the sense that there
are no approximate values associated with them. Their role is “geometric”; they
serve in the determination of a set Ω

bdry
h of boundary nodes that are actually

located on the boundary ∂Ω , and carry the assigned boundary values.
• Observe that the set Ω

bdry
h consists of selected points on the boundary, and in

general is not included in the underlying global grid Qi, j, i, j ∈ Z.

In Fig. 1 we designate the calculated nodes with black circles, whereas the edge
nodes are designated by white circles.

The proposed scheme is a compact scheme, i.e. all approximate values of high
order derivatives are related to values of a function ψ and its derivatives ψx,ψy at
immediate neighbors. More specifically, given a node M0 = Qi, j ∈Ωh, we consider
the eight surrounding nodes in the grid:

M̃1 = Qi−1, j+1, M̃2 = Qi, j+1, M̃3 = Qi+1, j+1,M̃4 = Qi−1, j,

M̃5 = Qi+1, j, M̃6 = Qi−1, j−1, M̃7 = Qi, j−1 ,M̃8 = Qi+1, j−1.

If all the nine nodes M̃i are calculated nodes, namely, in Ω calc
h , or coincide with a

boundary point, which is part of the grid, we set Mi = M̃i, i = 0, ...,8, and continue
with this regular stencil centered at M0. Otherwise, our goal is to replace the M̃′is
that are not in Ω calc

h by suitable M′is that are boundary points, namely, in Ω
bdry
h .

The values of ψ,ψx,ψy at these points are all that is needed in order to calculate the
various approximate derivatives at M0.
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M0(ih, jh)

Fig. 1 Embedding of an elliptical domain in a Cartesian grid. Calculated nodes are represented
by black circles. Exterior points are represented by black squares. The points labelled with white
circles represent edge points, i.e. interior points close to the boundary.

To describe this construction, suppose that M0 ∈Ω calc
h is a calculated node, while

for some 1 ≤ i ≤ 8, the neighboring node M̃i is either an edge node or an exterior
node. Consider the calculated node designated by M0 on Fig. 1. A zoom is shown
on Fig. 2. The 8 points M̃i are the points on the square (4 corner points and 4 mid-
edge points). Take the ray that emanates from M0 and goes through M̃i. This ray
must cross the boundary ∂Ω at exactly one point since Ω is convex. We define the
intersection point as Mi.

The calculation of the approximate value to ∆ 2ψ(M0) relies on the data at Mi
rather than M̃i.

• The four neighbors M̃1, M̃4, M̃6 and M̃7 are other calculated nodes so we keep
them, i.e. M̃i = Mi, i = 1,4,6,7. In particular, if we shift the coordinates of M0
to (0,0), we have for the coordinates of Mi, i = 1,4,6,7, the values h1 = h4 =
h6 = h7 = h.

• The other four neighbors M̃2, M̃3, M̃5 and M̃8 are either edge or exterior nodes
so they are replaced by points on the boundary as described above.

We thus obtain Mi , the actual points used in the calculation.
Once the 8 points Mi are determined and approximate values ψ ,ψx and ψy are

assigned to them, we can proceed to evaluate an approximate value for ∆ 2ψ at the
point M0. This is described in Section 2.
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M1(−h1,h1)

M2(0,h2)

M3(h3,h3)

M4(−h4,0) M5(h5,0)

M6(−h6,−h6) M7(0,−h7)

M8(h8,−h8)

M0(0,0)M̃2

M̃3

M̃5

M̃8

Fig. 2 Zoom on the neighborhood of point M0 on Fig. 1. The coordinates have been moved such
that M0 is the coordinates center. The 8 neighbors points of M0 are the points M1, M2, M3, M4,
M5, M6, M7 and M8. The points M1, M4, M6 and M7 belong to the Cartesian grid. The points
M2, M3, M5 and M8 belong to the boundary of the domain. They are obtained as the intersection
of rays emanating from M0 and directed towards M̃2, M̃3, M̃5 and M̃8 respectively. The points
M̃3, M̃5 and M̃8 are outside the domain. The edge point above M0 is marked with an open circle.

2 The discrete biharmonic ∆ 2
hψ operator

In this section we present our finite-difference scheme for the approximation of the
biharmonic operator. Fig. 2 shows the stencil used for the approximation of ∆ 2ψ

at M0 = (0,0). The 8 points Mk, 1 ≤ k ≤ 8 form an irregular stencil around M0.
Each of the nine grid points Mk carries three values: ψ,ψx,ψy. These are calculated
values if Mk ∈ Ω calc

h is a calculated node. If Mk ∈ Ω
bdry
h , then this point carries

boundary data given by the boundary conditions. In order to approximate ∆ 2ψ of
a given smooth function ψ at M0 we interpolate the data ψ,ψx,ψy on the stencil
{M0, ...,M8} by a certain polynomial PM0 of degree 6. The detailed construction of
PM0(x,y) is carried out in Section 3. To handle the irregular stencil around M0 we
denote by h the vector of the step-sizes around M0, as in Figure 2:

h = [h1, ...,h8]
T . (3)

Once the polynomial PM0(x,y) is constructed, we replace the smooth function ψ

by a discrete function ψ̃, defined only on the set of nodes Ω calc
h ∪Ω

bdry
h . The dis-

crete biharmonic operator ∆ 2
hψ for the approximation of ∆ 2ψ at M0 = (0,0) is then

defined by
∆

2
hψ̃(M0) = ∆

2PM0(0,0), (4)
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3 Calculating the interpolation polynomial PM0(x,y)

As mentioned above, our compact scheme for the biharmonic problem relies on an
interpolation polynomial of degree six. Such a polynomial is constructed for every
calculated point Mi, j ∈ Ω calc

h . This sixth-order polynomial is called PM0(x,y). It is
of the form (where here and below the subscript M0 is omitted) ,

P(x,y) =
19

∑
i=1

aili(x,y), (5)

where the polynomials li(x,y) are ((x,y) are shifted so that M0 = (0,0):

l1(x,y) = 1, l2(x,y) = x, l3(x,y) = x2, l4(x,y) = x3,

l5(x,y) = x4, l6(x,y) = x5, l7(x,y) = y, l8(x,y) = y2, l9(x,y) = y3,

l10(x,y) = y4, l11(x,y) = y5, l12(x,y) = xy,

l13(x,y) = xy(x+ y), l14(x,y) = xy(x− y),

l15(x,y) = xy(x+ y)2, l16(x,y) = xy(x− y)2,

l17(x,y) = xy(x+ y)3, l18(x,y) = xy(x− y)3,

l19(x,y) = x2y2(x2 + y2).

(6)

The 19 coefficients ai are obtained as follows. We consider the discrete values de-
pending on ψ̃ located at the eight points Mk, 1 ≤ k ≤ 8, around the point M0, (see
Fig. 2). From the discrete data at these points we determine 19 values to be interpo-
lated by P(x,y) and its derivatives:

Γ1(ψ) = ψ̃(M1), Γ2(ψ) = ψ̃(M2), Γ3(ψ) = ψ̃(M3),

Γ4(ψ) = ψ̃(M4), Γ5(ψ) = ψ̃(M0), Γ6(ψ) = ψ̃(M5),

Γ7(ψ) = ψ̃(M6), Γ8(ψ) = ψ̃(M7), Γ9(ψ) = ψ̃(M8),

Γ10(ψ) = (−∂x +∂y)ψ̃(M1), Γ11(ψ) = ∂yψ̃(M2),

Γ12(ψ) = (∂x +∂y)ψ̃(M3), Γ13(ψ) =−∂xψ̃(M4),

Γ14(ψ) = ∂xψ̃(M0), Γ15(ψ) = ∂yψ̃(M0),

Γ16(ψ) = ∂xψ̃(M5), Γ17(ψ) = (−∂x−∂y)ψ̃(M6),

Γ18(ψ) =−∂yψ̃(M7), Γ19(ψ) = (∂x−∂y)ψ̃(M8).

(7)

Note that the derivatives at any point are taken in the direction of M0 except that the
full gradient is given at the point M0.

There is a one-to-one correspondence between the polynomial (5) and the above
set of 19 data. More explicitely, the 19 coefficients ai in (5) are uniquely determined
by the data (7). For the proof of this linear algebraic fact, see [2].
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In (5), the coefficients ai depend linearly on the data Γk(ψ),1 ≤ k ≤ 19. There-
fore, P(x,y) can be rewritten as

P(x,y) =
19

∑
i=1

(
19

∑
j=1

Ai, jΓj(ψ)

)
li(x,y). (8)

We need to calculate the geometric coefficients Ai, j, 1 ≤ i, j ≤ 19 in terms of the
vector h = [h1,h2,h3,h4,h5,h6,h7,h8]. For this purpose, it is useful to decompose
the polynomial P(x,y) into the sum of four terms

P(x,y) = P(0,0)+P1(x)+P2(y)+ xyQ(x,y). (9)

Looking at (5) and (6), these four terms are expressed as:

a1 = P(0,0) = ψ(M0) ( given value) , (10)P1(x) = a2x+a3x2 +a4x3 +a5x4 +a6x5,

P2(y) = a7y+a8y2 +a9y3 +a10y4 +a11y5.
(11)

The polynomial Q(x,y) in (9) is then defined as

Q(x,y) =
P(x,y)−P(0,0)−P1(x)−P2(y)

xy

= a12 +a13(x+ y)+a14(x− y)+a15(x+ y)2 +a16(x− y)2 (12)

+a17(x+ y)3 +a18(x− y)3 +a19xy(x2 + y2). (13)

This decompsition is directional in the following sense:

• The polynomial P1(x) ∈ Span{x,x2,x3,x4,x5} corresponds to the ”horizontal
data”. It is determined by the 5 data (see Fig.2):

ψ(M4),ψ(M5),∂xψ(M4),∂xψ(M0),∂xψ(M5). (14)

• Similarly, P2(y) ∈ Span{y,y2,y3,y4,y5} corresponds to the ”vertical data”. It is
specified by the 5 data

ψ(M7),ψ(M2),∂yψ(M7),∂yψ(M0),∂yψ(M2). (15)

• Finally, it can be shown that the polynomial Q(x,y) is determined by the 8 ”di-
agonal data” in (7). These data are:

Γ1(ψ) = ψ(M1), Γ3(ψ) = ψ(M3), Γ7(ψ) = ψ(M6), Γ9(ψ) = ψ(M8),

Γ10(ψ) = (−∂x +∂y)ψ(M1), Γ12(ψ) = (∂x +∂y)ψ(M3),

Γ17(ψ) = (−∂x−∂y)ψ(M6), Γ19(ψ) = (∂x−∂y)ψ(M8).
(16)
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4 The numerical scheme

4.1 The embedded discrete biharmonic operator

In this section, we assume given for each point of the Cartesian grid the polynomial
P(x,y) (5) in terms of the data Γk(ψ). As explained in Section 3, the polynomial
PM0(x,y) in (5) is explicitely known by the coefficients ai, given as the analytical
functions: [

h, [Γj(ψ)]
]

j=1,...,19
7→ a =

[
a1,a2, . . . ,a18,a19

]T
. (17)

The discrete biharmonic at M0(x0,y0) is obtained by:

∆
2
hψ̃(M0) =

19

∑
k=1

ak∆
2lk(x0,y0). (18)

There are four nonvanishing terms in the right-hand-side of (18) which are:{
∆ 2l5(x0,y0) = 24, ∆ 2l10(x0,y0) = 24,
∆ 2l15(x0,y0) = 16, ∆ 2l16(x0,y0) =−16.

(19)

Therefore the discrete biharmonic at M0 is given in terms of the coefficients
ak

[
h, [Γj(ψ)]

]
by

∆
2
hψ(M0), 24

(
a5(h, [Γk(ψ)])+a10(h, [Γk(ψ)])

)
(20)

+16
(

a15(h, [Γk(ψ)])−a16(h, [Γk(ψ)])
)
. (21)

The discrete equation at point M0 is therefore (see (4)):

∆
2
hψ̃(M0) = f (M0). (22)

Equation (22) has to be supplemented by some additional relation connecting the
derivatives ψx,i, j, ψy,i, j and the values ψi, j. Our choice [2, 4] is to use an Hermitian
relation in the x− and the y− direction. In the x− direction we have:

α1,iψx,i−1, j +ψx,i, j +α2,iψx,i+1, j = β1,iψi−1, j +β2,iψi, j +β3,iψi+1, j. (23)

The five coefficients α1,i, α2,i, β1,i, β2,i and β3,i are defined as follows. Let M0 =
Qi, j(xi,y j) and let the two neighboor points M4 and M5 be (see Fig. 2):

M4(xi−hi,y j), M5(xi +hi+1,y j). (24)

Then
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α1,i =

h2
i+1

(hi+1+hi)2 , α2,i =
h2

i
(hi+1+hi)2 , β2,i =

2h4
i+1+4h3

i+1hi−4hi+1h3
i −2h4

i
hi+1(hi+1+hi)3hi

,

β1,i =−
2h4

i+1+4h3
i+1hi

hi+1(hi+1+hi)3hi
, β3,i =

2h4
i +4hi+1h3

i
hi+1(hi+1+hi)3hi

.

(25)

In the y− direction we have

γ1, jψy,i, j−1 +ψy,i, j + γ2, jψy,i, j+1 = δ1, jψi, j−1 +δ2, jψi, j +δ3, jψi, j+1. (26)

with values of the five coefficients γ1, j, γ2, j, δ1, j, δ2, j and δ3, j deduced from the
points M7 and M2 in a way similar to (25). We refer to [2, 4] for an analysis of the
Hermitian relations (23) and (26).

4.2 Assembling the global linear system

To each point (i, j) corresponds the discrete biharmonic relation (22) together with
the horizontal and vertical Hermitian relations for the discrete gradient (23) and
(26). All these relations form a linear system

AΨ = F. (27)

Assembling the matrix A using the relations (22, 23,26) is analogous to assembling
the global matrix in the finite element method.

According to Section 1, each point Mi, j of the Cartesian grid belongs to one of
the five categories:

1. interior regular calculated point
2. interior irregular calculated point
3. interior edge point
4. boundary point
5. exterior point

In our computation, this classification is performed using a so-called level set model
for the boundary ∂Ω . Assume that (x,y) 7→ ϕ(x,y) is a smooth function such that,
at least locally

ϕ(x,y)


< 0 if (x,y) ∈Ω , (interior point),
> 0 if (x,y) ∈Ω c, (exterior point),
= 0 if (x,y) ∈ ∂Ω , (boundary point).

(28)

Following [5], the interior point M0 =Mi, j is declared close to ∂Ω if ϕmin,i, jϕmax,i, j <
0 where {

ϕmin,i, j = min(ϕi−1, j,ϕi+1, j,ϕi, j+1,ϕi, j−1,ϕi, j),

ϕmax,i, j = max(ϕi−1, j,ϕi+1, j,ϕi, j+1,ϕi, j−1,ϕi, j).
(29)

In this case, the following quadratic model for ϕ is defined around M0 by:
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ϕ(x) = ϕ0 +(∇ϕ0)
T .(x−x0)+

1
2
(x−x0)

T (D2
ϕ0)(x−x0). (30)

In (30), ∇ϕ0 and D2ϕ0 stand for approximate values of the gradient and the Hessian
of ϕ(x) at M0. In the computations, centered differences for ∇ϕ0 and D2ϕ0 are
used. Using the model (30) allows to determine the approximate projection M∗0 of
the interior point M0 on ∂Ω , [5]. This gives

M0 =

{
calculated point if dist(M0,M∗0)≥ εedge,

edge point if dist(M0,M∗0)< εedge.
(31)

where εedge is a fixed parameter. For each calculated point M0, the length vector
h ∈ R8 and the elementary matrix Ai, j(h) ∈M19(R) are evaluated according to the
preceding classification into regular/irregular calculated points. Finally the elements
of each matrix Ai, j(h) are collected in the global matrix A. In a second step, for
each point Mi, j, the submatrix of A corresponding to the Hermitian relations for the
derivatives ψx and ψy in (23) is calculated. The global linear system Aψ = b is the
discrete version of the problem (1). Note that it is solved by a direct solver. Fast
solvers issues in the fashion of [5, 3] will be addressed in a future work.

5 Numerical results

We present several numerical results for the biharmonic problem with additional
Laplacian term: {

α∆ 2ψ(x)−β∆ψ(x) = f , x ∈Ω ,

ψ = g1(x), ∂ψ

∂n = g2(x), x ∈ ∂Ω .
(32)

In each case, the domain Ω and the solution ψ(x) are specified. The right-hand side
f (x) and the two boundary functions g1(x) and g2(x) are determined accordingly.
The numerical scheme is then used to obtain an approximation for ψ based on the
discrete values of f ,

5.1 Test cases in an ellipse

We first consider two test cases where the computational domain is an ellipse. A
similar test case has already been considered in [2]. The observed accuracy is very
good. The order of convergence is located approximately in the interval I = [3,4].
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mesh 9×9 Rate 17×17 Rate 33×33 Rate 65×65
e∞ 1.1175(-2) 4.40 5.3108(-4) 3.94 3.4538(-5) 3.45 3.1596(-6)

(ex)∞ 2.3270(-2) 4.35 1.1419(-3) 3.61 9.3285(-5) 4.24 4.9262(-6)
e2 1.7466(-2) 4.85 6.0551(-4) 4.08 3.5825(-5) 3.59 2.9702(-6)

(ex)2 3.1922(-2) 4.81 1.1402(-3) 3.79 8.2220(-5) 3.81 5.8612(-6)

Table 1 Compact scheme for ∆ 2ψ = f . The solution is ψ(x,y) = (1− x2)2(1− y2)2 in the ellipse
x2/12 +y2/22 ≤ 1. The ellipse parameters are (a = 1,b = 2,r = 1). The ellipse is embedded in the
square [−2,2]× [−2,2]. We present e and ex, the l2 errors for the streamfunction and for ∂xψ . The
parameter for points labelled as edge points is εedge = 5.10−3h.

mesh 17×17 Rate 33×33 Rate 65×65 Rate 129×129
e∞ 6.9555(-6) 3.53 6.0000(-7) 4.43 2.7790(-8) 3.29 2.8334(-9)

(ex)∞ 4.0042(-4) 3.64 3.2033(-5) 4.07 1.9102(-6) 2.98 2.4215(-7)
e2 1.1759(-6) 3.15 1.3240(-7) 4.26 6.9034(-9) 3.44 6.3715(-10)

(ex)2 7.4850(-5) 3.79 5.3933(-6) 3.98 3.4163(-7) 3.90 2.2865 (-8)

Table 2 Compact scheme for ( 1
2 ∆ −∆ 2)ψ = f . The solution is ψ(x,y) = 100(x3 ln(1+ y))+ y

1+x
in the ellipse (x− 0.5)2/(0.5)2 + (y− 0.5)2/0.32 ≤ 1. The ellipse parameters are (a = 0.5,b =
0.3,r = 1) with center (xc,yc) = (0.5,0.5). The ellipse is embedded in the square [0,1]× [0,1]. We
present e and ex, the l2 errors for the streamfunction and for ∂xψ . The parameter for points labelled
as edge points is εedge = 5.10−3h.

5.2 Test cases in non convex domains

5.2.1 Star shaped domains

We consider first the biharmonic problem (see Example 4.3 in [5]){
∆ 2ψ(x) = 0 x ∈Ω ,

ψ = g1(x), ∂ψ

∂n = g2(x), x ∈ ∂Ω .
(33)

The boundary of the domain is given in polar coordinates by

x(θ) = R(θ)cos(θ), y(θ) = R(θ)sin(θ), 0≤ θ < 2π, (34)

with R(θ) = 0.6+ 0.25sin(kpθ). The domain is represented on Fig. 3 for kp = 7,
(seven branches case). The exact solution is ψ(x,y) = x2 + y2 + ex cos(y). The nu-
merical results are reported on Fig. 4 where the least square slope is represented,
based on six grids. They show excellent accuracy, even for very coarse grids. Ob-
serve in addition the low error level for ψ and ∂xψ .
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Fig. 3 Seven branches star shaped domain embedded in a 33× 33 grid. • Left: domain and grid.
The boundary points are marked with black triangles. The edge points are marked with open circles.
• Right: approximate solution corresponding to ψex(x,y) = x2 + y2 + ex cos(y).

Fig. 4 Star shaped domain: linear regression of the convergence rate for ‖Ψ − (̃ψex)‖∞ and

‖Ψx− (̃ψx,ex)‖∞ where the exact solution is ψex(x,y) = x2 + y2 + ex cos(y). • Left: domain with
7 branches, (kp = 7). • Right: domain with 9 branches, (kp = 9). On each regression line, the six
points correspond to the six grids 10×10, 20×20, 30×30, 40×40, 50×50 and 60×60.

5.2.2 A double circle shaped domain

Finally we consider the domain which consists of the interior of two disks partially
overlapping. The boundary is given in polar coordinates by

x(θ) = R(θ)cos(θ), y(θ) = R(θ)sin(θ), 0≤ θ < 2π. (35)

with R(θ) = d|cos(θ)|+
√

R2−d2 sin(θ)2. We consider the case R = 0.5 and d =
0.4. The domain is represented on Fig. 5. The exact solution is ψ(x,y) = exp(x+y).
The numerical results are reported on Fig. 6. Again, the accuracy is very good. But
the levels of error are higher than in the flower case. This can be attributed to the
non regular boundary.
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Fig. 5 Double circle shaped domain embedded in a 41× 41 grid. Left: domain and grid. The
boundary points are marked with black triangles. The edge points are marked with open cicles.
Right: approximate solution ψ(x,y) = exp(x+ y).

Fig. 6 Double circle shaped domain: linear regression and convergence rate for ‖Ψ − (̃ψex)‖∞ and

‖Ψx− (̃ψx,ex)‖∞ with • Left: ψex(x,y)= exp(x+y) •Right: ψex(x,y)= 10(x5 sin(4πy)+ y4

1+x2 ). For
each regression line, the six points correspond to the six grids 10×10, 20×20, 30×30, 40×40,
50×50 and 60×60.
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