Finite volume box schemes
on triangular meshes

B. Courbet™ and J.P. Croisille(**)

() ONERA, Division de I’Energétique
29 Avenue de la Division Leclere, 92330 Chatillon, France

E-mail: courbetQonera.fr

(%) Laboratoire Analyse Numérique et EDP
Bat. 425, Unwersité Paris-Sud, 91405 Orsay, France
E-mail: Jean-Pierre. CroisilleQmath. u-psud. fr

June 1996

Abstract : We introduce a finite volume box scheme for equation in divergence form
—div(e(u)) = f, which is a generalization of the box scheme of Keller. As in the
Keller’s scheme, affine approximations both of the unknow u and of the flux ¢ are used
in each cell. Although the scheme is not variationnal, finite element spaces are used.
We emphasize the case where the approximation spaces are the nonconforming P!-space
of Crouzeix-Raviart for the primary unknown u and the divergence conforming space
of Raviart-Thomas for the flux ¢. We prove an error estimate in the discrete energy
seminorm for the Poisson problem. Finally, some numerical results and implementation

details are given, proving that the scheme is effectively of second order.

Résumé : Nous introduisons un schéma boite de type volume fini pour les équations
sous forme divergence —div(p(u)) = f, qui est une généralisation du schéma boite de
Keller. Comme dans le schéma de Keller, une approximation affine est utilisée dans
chaque cellule, a la fois pour 'inconnue u et pour le flux . Bien que le schéma ne soit
pas sous forme variationnelle, on utilise des espaces d’éléments finis. Nous décrivons plus
particulierement le cas o1 les espaces d’approximation sont ’espace P! non conforme de
Crouzeix-Raviart pour 'inconnue primale et 'espace div-conforme de Raviart-Thomas
pour le flux . Nous prouvons une estimation d’erreur en semi-norme d’énergie discrete
pour le probleme de Poisson. Finalement, la mise en ceuvre de la méthode ainsi que
quelques résultats numériques sont présentés, prouvant qu’elle est effectivement d’ordre
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1. Introduction

In a fundamental paper [17], H.B. Keller introduced the notion of box-scheme for
parabolic equations. For an equation in divergence form, the main idea is to take the
average of the conserved quantities on boxes defined from the mesh, in order to use only
interface unknowns. The discretized equations form a so called compact scheme, in the
sense that the local stencil of dependence of the scheme is reduced to the local “box”.

The box-schemes of Keller have been applied by several authors [13,18] to non-
standard parabolic equations, for example with moving boundaries, owning an integro-
differential part, or involving constraints in some part of the domain. The results clearly
demonstrate that the box-schemes are at least as good in precision than standard finite
difference or finite element methods.

The box-schemes have been also used in some works in the 80’ for compressible flows
computations (Euler or Navier-Stokes equations). These schemes have indeed many
interesting properties for the approximation of complex flows. They are conservative
and of good accuracy for stationary solutions on relatively poor meshes. The matrices
resulting from the discretization are compact and of simple structure on structured
grids. Moreover there are no edge-gradient interpolation prolems as in the cell-centered
finite-volume approach. We refer to Casier, Deconinck, Hirsch [6], Wornom [24,25],
Wornom and Hafez [26], Chattot and Mallet[7], Courbet [9,10], Noye [22].

The aim of this paper is to introduce in a rigorous way a class of finite volume box-
schemes on triangular meshes for equations in divergence form, like V.o = f, where
the flux ¢ is given by a closure relation like ¢ = F(u,Vu). The main interest of
the new scheme is to allow an affine cell approximation both for the function v and
for the flux ¢, in the framework of a finite-volume method defined onto the primary
mesh. This is clearly an important property when the closure model is complex. A
typical example is when a large variation of the diffusion coefficients occurs whitin a
cell, for example in boundary layers. The basic principles of the scheme are, firstly to
remark that choosing the boxes as the primary triangular mesh gives the good number
of equations [8], secondly to introduce a formulation mixing two types of standard finite
element spaces : the nonconforming P! element of Crouzeix-Raviart [11] for the primary
unknown and the divergence-conforming element of Raviart-Thomas of least order (RTp)
for the gradient [23]. The resulting scheme seems to be new. In particular, it is different
from the classical mixed finite element approximation [23], which is variationnal, and
insures the equality between unknowns and equations by a Babuska-Brezzi condition.
It is also different from the box-scheme of Bank and Rose [1], also studied by Hackbusch
[15]. This latter scheme remains basically variationnal and requires the construction of
boxes as a dual mesh of the primary one. This is also the case in the covolume approach
of Nicolaides [19,20,21]. Let us point out finally the recent works by Farhloul and Fortin
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[14], and by Baranger, Maitre, Oudin [2] on the connection between finite volume and
mixed finite element methods. See also the work by Emonot, [12].

In the present paper, we restrict ourself to the presentation of the scheme onto the
Poisson problem, i.e. when ¢ = Vu. The outline is as follows. After the introduction
of the scheme in Section 2, we study in some details the particular case where the
discrete spaces are the nonconforming P! space and the RT, space in Section 3. An
error estimate in the energy semi-norm is derived. Finally we give in Section 4 some
implementation details together with some numerical results, before to conclude in

Section 5.

2. The principle of the scheme

Let us introduce the scheme on the Poisson equation

{—Au:f in Q,

(1)
u=20 onto 012,

where Q C IR? is a bounded domain. The equation can be recasted in the mixed form

with unknowns v and p= Vu.

(2)
u=2>0 onto 0f).

The problems (1) and (2) are equivalent and have a unique solution (u,p) € (Hg(£2) N
H?(Q), HY(Q)?) when f € L*(Q) and when Q is convex or has a smooth boundary. Let
Tr be a mesh consisting of triangles K, such that Q = Uger, K with max d(K)/p(K) <
C , where C is a constant independent of h, and d(K), p(I{) are the diameter of K and
the diameter of the inscribed circle in K. We suppose that d(I) < h. We note |K| the
area of X, A = A; U A; the set of the edges of T constitued of the internal edges A; and
the boundary edges Ay. The number of triangles is N E. The number of internal edges,
boundary edges are NA;, NA; and the total number of edges is NA = NA; + N A,;.
We approximate u by up and p by P, where up € V3, and p, € Qrn, Vi and Qp,
being approximation spaces of finite element type. The consistency with (2) is not

ensured in variationnal form but by the equations
(3a) <V-]_9h + f,]1K> —0OVEKET
(3) (3b) <Bh — Vuy, ]1K> —0 YKeT,
(3¢) up =0 on 0f).



(3) is a finite volume method in that the trial functions 1 are indicatrices of the cells

K € Tj. The equation (3a) can be rewritten as

(4) | per K=o,
oK

where fi = |f1_&| [y f is the average of f(x) on the triangle K. Thus, (3a) appears as a
conservation law. Moreover the equation (3b) ensures in a weak sense the equality of

Vup and p, in the triangle K.

3. The case V,= non conforming P!, Q,= RT,

3.1. The approximation spaces

We present in this section the standard approximation spaces of our scheme namely
that where V}, is the non conforming P1 finite-element space of Crouzeix-Raviart, and
Q) the Raviart-Thomas space of least order (denoted RTp). Recall that both spaces
occur in classical finite element approximations of the Poisson equation, but not simul-
taneously. The non-conforming P! space is introduced in [11] for the Stokes problem,
and can be used for the Poisson equation. No approximation of Vu is required. On
the other hand, the space RTj is introduced in [23] for the approximation of Vu in the
Poisson equation in mixed formulation, but the Babuska-Brezzi condition requires the
P°— approximation of u (i.e. constant in each triangle). For a good synthesis on these
approximations, we refer to Braess [3], Brenner and Scott [4], Brezzi and Fortin [5].

Let us recall the definition of these two spaces. The space V}, is defined by
Vi ={on/V K € T, vnlx € Pi(K), vy is continuous at the middle of each e € 9K }.

In other words, if @ € 0K; N 0K; is an edge of T, and m, the middle point of «,
vp|r1(ma) = vi|r2(my). We denote by (ps(x))aca the canonical basis of Vj, that is,
the dual basis of the global degrees of freedom L, defined by (L,,vs) = vp(m,). We
have (Lo, par (7)) = 6aar for a,a’ € A If up(x) = 3°,c 4 waPa(), the restriction of uy to
the triangle K is given by

uh(x)/K = Z uepe(x)v

e€COK

where p.(x) = 1 — 2\g(x), As(x) being the barycentric coordinate of & with respect to

|

S, vertex opposite to e in the triangle . Note that Vp.(z) = TR Le-



Fig. 1. A triangle of Ty

Moreover, we denote by V}, o the subspace of the uj; € V}, such that u, = 0 for each
edge a € Ay.
The space @), is defined by

Qn ={g,(z) € Hais(Q) / ¥V K € Th, ¢,(2)|x € RTo(K)}

where, for each K € Tp,, RTH(K) = Po(K)? + Py(K) [iz} (dim RTH(K) = 3). The

constraint gh(:li) € Haiv(Q) is equivalent to the continuity of the normal component

q, V4 through each edge a = K1 N Ky. If a = ein Ky and a = ¢’ in K3, one has

(5) Qh|K1 (l’) "V + Qh|Kz($) Ve = 07 Ve a.
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The global degrees of freedom of (), are the linear forms L,, a € A, defined by
<Lavﬂh> = /agh rv,do (circulation of ¢, along the edge a).
The canonical basis of @), (dual basis of (Ly)eca) is given by

P,(2) = Py, (2)1g, (2) = P, o(2) 1, (2),

where a is oriented from K7 towards K5, a = ¢ in K7, a = ¢’ in K;. For each K € T,

and each e € 9K, the polynome P, is defined by

1 vl — g L2 -
E}(,e(w)—m[xz_w% , Va=(x,2°) € K.

Note that, for € a, Py (v) v, = %|
Moreover, if q, € Q) is globally decomposed onto (P,)sec4 in the form

Qh(x) = Z qaﬂa(x)7
aEA
then the local decomposition of gh(:zj)h( onto (P . )ecor is
Qh(x)h&" = Z e EI(,e(x)v
eCOK

where g. = qq(K,e) if the global orientation of ¢ is from K = K, towards K3, and
de = —qa(K,e) 0 the opposite case.

Finally, ¢, (¢)[x admits also a useful representation in the form ([2])

(6) 4, (0)|lx = ax +1E|(V - ¢, )k Pg ()

where g = |f1_&| fK 9, (V- gh)K is the constant value of V - q, in I, and Py (x) is the

polynome of first order

L e .
EK(:L') - § g;}ﬂe(l') = m {xz _ l’%; , VaoeK.

3.2. The discrete system
Let us describe now the discrete Poisson equation obtained in the case where V}, is
the non conforming Plspace and Q}, is the RTy-space. Let up € Vj, and p, € Q1 have

the local decomposition on each K € Tj,

un(x) = Y uepe(w), p,(e)= Y pelP(2).

e€COK e€OK



Equation (3a) gives for K € Ty,

(7a) 0= / p, v+ I|K|fx = Z pe + |K|fx (NE equations)
oK c€OK

Equation (3b) gives

_ /KQ_,h_vuh): S pe / P.(z)—ue | Vpelo)

K K

Recalling that Vp.(z) = ﬂg and denoting Qe = fK P (x), N
each K € Ty,

. = le|lv, we get, for

(70) 0= {pege — ueﬂe} (2 NE equations).

Note that since

Yo~ [ ¥ rw@=3 Pe=0

e€oK e€oK
we have Qeg = —(Qel + QeQ). Moreover we have Y

boundary condition gives, for each a € 052

ceore N = 0. Finally the Dirichlet

(7¢) 0 = u,.
More generally, we will consider boundary conditions of the form, for a € Ay,
0= (Ba,u,un) + <Ba7p,g_)h> (N Ay equations),

where B, ., B, , are linear forms onto Vj, Q) such that at least one of By, Ba,p is

different from 0. For example, a mixed boundary condition on the edge a € Ay will give
(7d) MqUq ‘|‘£apa = Ng

where (mg,0q) # (0,0). A Neumann boundary condition is given by m, = 0, ¢, = 1.
By counting the edges of T, we have

3NE:Z Z 1:221+Zl:2NA—NAb.

K ecoK acA; a€AL

Thus, we get the relation between the number of triangles NE. the total number of

edges N A, and the number of boundary edges N A,
(8) SNE + NA, =2NA.
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The number of unknowns (g, pa )aea is equal to the number of the equations (7a),(7h),(7¢).
We note finally that the relation (6) gives the following representation of p, () in

each triangle K
(9) p, (@) = Vur — |K[fr Py (2),

where we note Vuyg = |f1_&| fK Vuy,.

Summarizing the discrete system (7a,b,c), we get the discrete problem : Find
un(2) = $aen taPa(®), B, (2) = Suen, paPa(e) such that

Z pe+ |K|fx =0 VEKeT,
e€oK

(10) Z {pege —uN,| =0 VKeT,
e€oK
U, =0 Vae Ay

Note finally the following elementary result, linking the 3 vectors (Q )ecor and (N, )ecor

Ve

(see Fig.1 for the notations)

1 1 1
Q = g(cotan .N, — §cotan O N, — §cotan O N i)

3.3. Numerical analysis

This section is devoted to the numerical analysis of the problem (1) approximated
by the discrete system (10). The main tools are those of the finite element method,
although the framework is not of variational type.

Let us introduce some standard notations.

- 1/2

lulpo = /uz(x)dx} for u € L*(Q2)
i 1/2

[ulmo = / |Dmu(:1;)|2 d:z;} for u e H™(Q)
) 1/2

ullho = Z |Vu|2d:1;> forue HY(Q) D V.
K JK

The first observation is



Lemma 1 [1]. The discrete energy semi-norm ||vy||, is a norm onto the space Vi g =

{Uh € Vy,vp =0 on 89}

Proof : Let v, € Vi such that |jv,]|, = 0. The gradient of v} is zero in each cell
K € 7T,. Hence vy, is constant in each K. Since vy, is continuous at the middle of each
edge a of Ty and v, = 0 onto 912, we deduce that vy = 0 in €. [

The first result is the existence and unicity of the discrete problem (10).
Theorem 1. The discrete problem (10) has a unique solution (up,p, ) € Vio X Qp.

Proof : The problem (10) in (uh’Bh) € V0 X @ 1s linear, and the number of unknowns
is equal to the number of equations. Hence, it is sufficient to prove that f = 0 implies
up = p, = 0. The relation (9) gives that p, (z) is a constant ¢y in each K € 7}, and
that ¢;- = Vug. Hence

2
‘Bh‘m - Z K| |ex|* = Z K |ex - Vg
K K
= Z/ g_)h(:zj) - Vup(x)dz
K VK

— Z /ar'(z_)h(x) cv(@))up(x)do — i AV Z_)h(x)uh(l')dl’.

Since V -}_)h(:zj)h( = fx =0, and up = 0 on 012,

2

00 Z/al,(ﬁh(x) ~v(x))up(x)do

2

=) /(2_9,171 vo)ung = (B, La)un2,
a€A; a

where A; is the set of the internal edges and the edge a is oriented from K; towards

I{>. Denoting by p, the constant value of p, 1(:1;) "V, =P, 2(:1;) - v, for x € a, one has

2
= g Pa /(Uh,l —up2) =0
0, a
a€A;

2

by definition of V3. Therefore ¢;r = Vug = 0 for each K, hence ||up|[r = 0 and by
Lemma 1, up = 0. [

Before proving an error estimate, note the two following stability estimates :
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Proposition 1. If (up,p,) € Vo x @y is the solution of (10), then

(11) (1) |unll, < ‘Bh < C (J|lunll, + R|flo,e), C independent of h,
(12) m>Hgﬂhs2Ugbe

Proof : (i) The equality (3b) gives Vug = |A| I ph x)dx, hence

2
2 - 2
ol = S 18 Fusl < 3 [ [y (o)
K K 7B

Moreover, (9) gives

2

dr = ‘ph

0,0

2, o < Monll s+ 1B el Paclo

We have

1 P
P2 = 1 132 2 2y _ PK
|_A |07A 4|A’|2 /A(x xG) - (l' xG) 4|f&’|

where pg is the gyration radius of K. By noting that the regularity assumption on the
mesh insures the existence of C, independent of h, such that sup |Ip|1f/2 < C and that

lfr| < |K|1/2 | flo, -, we get by summation on K € Ty,

2, < Ol +lflos)

where C' = max(2'/2,C /2'/?).
(ii) Again (9) gives
Vp, @)k = |K[feVEPy-.

Z‘ ph‘ Z|IX|2 |ffx |VPA|O K

Noting that |v£1(|(2) K= 3 1K|7 we obtain

Thus

o,

2 1 . 1
leu| =5 1K1kl < 5150
K

Our second main result is an error estimate in the discrete energy norm || ||5. Let
u € H* N H} be the solution of the Poisson problem (1) with f € L*(Q). We consider
also p(x) € H'(Q)? defined by p(z) = Vu(z). For u,v € H' &V}, we define

a(u,v) = Z Iqu -V
K /B
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the bilinear form associated with || |[r,e. On H(div,Q) = {p € L*(2)?/V -p € L*(Q)}

we define the semi-norm
|Z_)|?liv,(2 = /Q(V‘B)Zdl'

associated with the bilinear form

bp.q) = / (V- p)(V - g)da.

Theorem 2. There exist constants C = C(2) > 0 independent of h such that

(i) lu = unll, < Chlulzq
i — < Ch

(i) \2_9 z_ﬁh\m < Chlulz0
— < Ch .
(iii) ‘Z_? P, div.e = |ul3.0

Proof of (i) : We follow a classical strategy. We have for any v;, € V}, o

v —wrll, <llw—ovnll, + lun —vall,
(13) lun — vnlly = alun — vi,up —vi)

= a(up — u,up —vp) + alu — v, up — vp).

Thus

la(up — w,up — vp)|

|un — vnll, < sup + [Ju — o[,

v €Vihoo Huh — UhHh

and (13) gives

(14) lu—unll, <2 inf |ju—ovull, + sup la(up — u,wp)|
v €Vihoo wrEVh o Hwh”h

Since the space V}, o contains the standard P'-Lagrange finite element space, the classical

interpolation estimates gives in‘f lu — o], < C(Q)h|ulz,q. It remains to estimate
v €Vh o

the second term. We have

(15) an(up —w,wp) =Yy [/KVuh-th—/KVu-th].

K

Vup is constant on each K, and by (3b) its value is Py = |f1_&| I }_)h(:zj)d:zj. Thus

Vuy, - Vwy, = / g_)h(:zj) -Vwp(x)dz
K K

—— [ Vep s+ [ o, (o) oo

12



(3a) gives [,V -}_)h(:zj) + f(«) = 0. Thus the value of the constant V -}_)h(:zj) in K is — fg
where fx = |f1_&| fK f. Hence

Vuy, - Vwy, = frwp(x) —I—/ wh(:zj)}_)h(:zj) -v(x) do.
K K oK
Moreover
Ou
Vu-Vwy, = —Au wp + —wy,
K K oK 81/
0
= fwp+ —uwh-
K ar OV

Thus (15) can be rewritten as

(16) E:/WUK—ﬂ@M%@Mx+§:/W{&@ﬁ—vww v wh(z)do(z)
K K (I) K oK (H)

Since [, fx — f(x) =0, one can substract a constant value from wy(x) in each term of

the first sum and rewrite (I) as

0 =3 [ (= Fawnte) = wnx)de,

Thus
(D] < § |fr — f|0,K wh — wh, K 0,K
K

< Ch|floa [[wall,
< Chluls,allwnll, -
Consider now the sum (II) in (16). Each internal edge e € 0K occurs two times in
the sum with a vector v changing of sign. On each boundary edge ¢, one has [, wydo =0
since wy, € V3 0. Thus, by substracting the function (|1?| fe (}_)h(:zj) —Vu(z)) v, do)w(z),

we do not change the sum. Its value is

Z/ {Z—)h(m) - v“(l’)} v wp(r)do =
(17) o JOK
Z Z / [(Bh(:lr) — Vu(z)) v, — % /(gh(:z;) — Vu(z)) - v, | wy(z)do.

K ecdK Ve €

Recall now the following result (Lemma 3 of [11]).

Lemma 2. Let e € K, v, € H'(K), v, = |1?| J. v(x)do, then

L@@—vﬁk

< Ch|99|17[(|v|171(7

13



where C' is independent of h.

Applying this result to the right-hand side of (17) gives
) < ony 2, = V|, ol e < O |lp, = V| el

and, using (12)
(D] < Chlflo.g + [ulz,a] lwally < 2Chlulsa lwally, -

Finally, there exists C' > 0 independent of i such that

la(up — u,wy)|

< (D] + D] < Chlulz,0.

sup
wpE€Vh o HwhHh

Going back to (14), we obtain
[l = unll < Chluls,o.
Proof of (ii) : From the representation identity (9) of }_)h(:zj)h( we have

}_)h(:zj)h( = Vup g — |K|fx Py (x) and ]_?(l‘) = Vu(x).

Thus
p, @)k — p(a)lx = Vupx — Vu(z) — |K[fx P ()
and
2, —p| < Vun = Vulg g+ K Fl iclo,c -
Since | Pyl o = g < Sand |fic| < iz flo,i, we deduce
(18) b, —p| <l —ull, +Chlflog < Chlulzg.

where C' stands for a constant independent of h.

Proof of (iii) : Again by (9), V'Bh($)|K = —|K|fxV-Pp(z) = —frx and V-p = — f(x).

Thus, |V-p, =V -p =|f — frly x < Chlf|i,x and, by summation over the K &
- —l0,K ’

Th, we obtain

(19) ‘V-Bh . V-}_)‘O S CHiflia < Chluls . -

14



Since Vi, 0 ¢ Hg we can’t deduce directly from Theorem 2(i) an error estimate in
the L? norm by the Poincaré inequality. We propose a regularity assumption on the

triangulation 7Ty, which is sufficient to insure such an inequality.

Hypothesis (H): There exists a disjoint cover of Tj, by a set of Ny, connected slabs B;
where each slab B; is made of N, ;, triangles, with at least one triangle in contact with
the boundary 92. Moreover

iy w-o(1).

(H2) sup N;p = O (%) )

This hypothesis can be read as a type of structuration of 7j,. The triangulation of Figure
2 satisfies this hypothesis.

Lemma 3 : Under the hypothesis (H) on the triangulation T, there exists C'(€2) > 0
such that for u € H(% D Vho

|ufo. < C()[|ulls-

Proof : Since this inequality is true for v € HJ (Poincaré inequality), it is sufficient
to prove it for u € Vi, 0. Let v € V}, o. For each = € B;, consider the path v C B;, v
being defined by [zg,x1] U [z, 22] U ... [J}Ni(x),l'] where the z; are mid-edge points of
the triangles of B; and where x¢ € 02 N B;.

By definition of V}, o, up /7 is piecewise affine and continuous ; hence

Nigey—1
lu(z)] < Z ‘Vu;gj‘ le; — x| + ‘VUN,»(x)‘ ‘:1; — TN (2)

J=1
N;in

<ChY |Vug,|.

j=1
Taking the L* norm of u on B;, gives

N;in
lulo,5, < Ch|Bi|'/? 3 [Vu |-

J=1

15



Fig. 2. A triangulation Ty, satisfying the hypothesis (H) with
Nw=+4; Nip=%; M=1.

)

Since Nj = O (%) by (H1), we have |B;| = O(h) and the Cauchy-Schwarz inequality
yields
Nin 1/2
o <ente (S fwu ) g

=1
Moreover N;p = O (%) (hypothesis H2), hence
lulo,5; < Cllulln,5:-

Summation over the B; yields the conclusion since the B; are a disjoint cover of Tj.
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Theorem 2(i) and Lemma 2 allow the L? error estimate

Corollary 1. Under the hypothesis (H) on the mesh T}, there exists C independent
of h such that

ju —unly g < Chlul.

o0

Fig. 3. A path joining x € K to 0S)
4. Numerical results

4.1. Implementation
We present in this section the principle of the implementation of the discrete system
(10). We call U = (ug)qsea the vector of the components of uj(2) onto the P! non-
conforming global basis p,(x) (see §3.1). We define also Ux and Py the vectors of the
local components in the cell K of uj;(x) and }_)h(:zj).
T T
Uk = [u€17u€27u€3] , Pr = [pempezvpe?)] )
where O = {e1, €3, €3} are the 3 edges of I{. (No specific orientation of the 3 edges is
required in Ui and Pg ). Clearly (10) can be rewritten as

(24) ~Ly - Ug + My - Pgx = —Ng

17



where I~/K,MK € M;(IR), Ni € R? are

o, Jo 0o o7 1 1 1
b= [N N2 N = | Q Q@
| K| vy NV NY | K| y y y
B fK
N[( — 0
0
Since Q= —(Qe +0Q, ), we deduce that the 3 vectors of IR? (1,Qe ),(1,Qe ),(1,Qe )

are never colinear. Hence MK is non singular and (24) can be rewritten as
(25) Py =—Ng+ Lk Uk
where N[( = MI;IN[(, L[( = MI;IN[(.
We eliminate now the unknowns (pg)eca. If @ is an internal edge, with orientation

from K;(a) towards Ky(a), a = e in Ky(a), a = e; in Ky(a), the identity Pr, ., =
— Pk, e, holds. Thus we have

(251) I:Lf(l . Ufﬁyl]el —I_ I:LI(Q . UI§72]62 == NI(17€1 —I_ NI§727€2
Consider now a boundary edge a € 0K with boundary condition (7d)
Malq ‘I’Kapa = Ng

there are two cases, corresponding respectively to Neumann and Dirichlet boundary

conditions :
) 1
(1) ly # 0, then p, = K—(na — mqt,) = [—Nk, + Lk, - Uk, ],
(i) ly =0, then m, # 0 and u, = la
Mg

We obtain in this way a linear system in the unknown U = (ug)aca
(26) AU =0

where A is the global stiffness matrix and b the global right hand side.
The final algorithm is similar to the one of the standard finite element method,

with a main loop on the elements. It can be written shortly
do for K € Ty,
evaluate Ly, Ni
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assemble the contribution of Lx to A, Ni to B
enddo

do resolution of AU = b.

If necessary, g_)h(:zj) can be evaluated from uy(x) by (25).

We define now U; € IR™N4¢ the subvector of U € IRV4 corresponding to the internal
degrees of freedom (i.e. the internal edges). A; is the matrix extracted from A that has
the same dimension that U; and b; € IRN4¢ is the corresponding right hand side. In
the case of the homogeneous Dirichlet problem, the resolution of AU = b is equivalent
to the system A;U; = b;. It is not directly apparent from the form of the elementary

martrices I~/K, MK that the matrix A; is symmetric definite positive.

Proposition 2 The global siffness matrix A; corrsponding to the internal degrees of

freedom of the system (26) is symmetric positive definite

Proof : For each I € Tj, an easy calculation shows that the 3x3 matrix Lx and that

the vector Ni are

Co + C3 —C3 —C2 |IX’| 1
Lig =2 —c3 3+ ¢1 —c1 ; Nig = 3 /K
—C2 —C1 C1 + Co 1

where ¢; = cotan 6.,,7 = 1,2,3. This can be checked either directly from (24), or by
integrating the relation (9) along each edge e € K. Using the fact that ¢z + ¢z > 0,
c1¢9 + cac3 + czeq = 1, we deduce that the 2 first minors of Ly are non-negative, hence
Ly is a rank 2 symmetric positive matrix.

We introduce now IA/K the NA; x NA; matrix, and ]\ATK the vector of RN4i defined
by

for a,a’ € A;, Ly qar =Licer if a=ce, a =¢in K
fora € A;, Ngo = Ngeifa=ein K

We define also I:R"a the NA; x NA; matrix whose non-zero coefficients are on the line

number ¢ in the matrix IA/K. The relation (251) is equivalent to
Lk, Ui+ Ly aUi = Nk, .o + Nk, o for a € A;
hence

Ai = Z z[&'l,a + j—/I(27a = Z j—/[(

aCA; KeTs
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Since Ly is symmetric, so is IA/K, hence A; is also symmetric. Moreover the following
relation holds for each V € RNAi

VIAV = > VILgV = ) ViLgVi
KeTy KeT,

Because of the positiveness of L, we have VT A;V > 0. The definiteness of A; results

of the uniqueness result of the theorem 1. m

4.2. Effective order of the scheme

In order to check the second order accuracy of the scheme, we have performed

simple tests on the Poisson problem on the square Q = [0, 1]%. We solve a problem

—Au = fr on )
u =0 on J9Q

where fi(x,y) = ((2rk1)? + (27k2)?)sin 27k @ sin 2wkyy. For different values of k =
(k1,k2). The exact solution is ug(x,y) = sin(27kix)sin(27ky). We use four meshes
with respectively 100, 400, 1600, 3600 triangles. The mesh 7} is a regular triangulation
consisting on squares divided in 4 triangles. The parameter h is the length of the edge
of the square. The Table 1 reports the values of |u — uh|07Q for (k1,k2) =(1,1), (3,3),
(15,15), (30,30). In this latest case, the finest mesh (3600 triangles) should have the
limit resolution (one period for k). On Figure 4, we have plotted in Log-Log scale the
points of the Table 1.

h=02 | h=0.1 | h=0.05 |h=0.0333
(k1,ke) = (1,1) [2.63107%(6.57 107* |1.64 107*| 7.30 10~*
(k1,k2) = (3,3) 0.237 [5.92107%|1.48 1072 | 6.57 10°

(k1, ko) = (15,15) | 2.271 4.590 0.3737 0.165

(K1, k2) = (30,30) | 1.633 2.271 4.590 0.261

Table 1 : Value of the error |u — uply o for

different meshes and different solutions
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Fig. 4. |u — uplo,0 versus h in Log scale

As expected, the slope of the line are 2 for the “low frequence” solutions (ki,ks) =
(1,1) or (3,3). For (ki,ks) =(15,15) , the convergence begins only with the two finest
meshes, whereas it it not really reached for (ki, k) = (30, 30).

4.3. A singular test case

This test-case, proposed by Johnson in [23], is to find the solution of

{ —~Au=0 on Q=[-1,1]?
(26)

U=y on 0f)

Y
r+1

u(x,y)/ 0. The solution has a singularity at (—1,0). On Figure 5 are displayed the exact

which exact solution is u(z,y) = arc tan < > . The boundary condition is g(z,y) =

solution, the computed solution and the L error on a mesh of 400 triangles. This test
is interesting because u ¢ H'. As expected, the error is O(1) at the singularity. Note
the continuity of uj at the mid-edge points.
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error

Fig. 5. Ezact, computed solution and L™ error on the test case of Johnson. (400 triangles).
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5. Conclusion

We present in this paper a finite volume scheme apparently new, which is a gener-
alization to triangular meshes of the Keller’s box scheme. The framework of the finite
element spaces is used systematically and allows to prove an estimation error in the
discrete energy norm for the Poisson problem.

The main feature of this scheme is that, as in the original box-scheme of Keller [17],
piecewise linear spaces are used both for the solution and the fluxes (the gradient). This
aspect seems particularly suited for complex elliptic problems. Moreover, the extension
of this scheme to 3-dimensional computations on tetrahedral meshes is straightforward.
Note finally that the evolutive version of the scheme is implicit. This appears to be
particularly interesting for complex parabolic problems where large time steps can be
used.

Objective explored in a near future are :

1. A careful comparison with the standard mixed finite element method has to be
carried out, especially for problems with large variation of the diffusion coefficients
within a cell. Typical examples are boundary layers computations. The Stokes
problem can also be an interesting test comparison.

2. Parabolic problems involving complex fluxes.

3. The compressible Navier-Stokes equations. The introduction of upwinding in box
schemes for compressible flows have already been explored in [7,8,9,24,25] and re-

quires further developments.
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