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Abstrat. We present the numerial analysis on the Poisson problem of two mixed Petrov-Galerkin

Finite Volume shemes for equations in divergene form div'(u;ru) = f . The �rst sheme, whih

has been introdued in [22℄, is a generalization in two dimensions of Keller's box-sheme. The seond

sheme is the dual of the �rst one, and is a ell-entered sheme for u and the ux '. For the �rst

sheme, the two trial Finite Element spaes are the nononforming spae of Crouzeix-Raviart for the

primal unknown u and the div-onforming spae of Raviart-Thomas for the ux '. The two test spaes

are the funtions onstant per ell both for the onservative and for the ux equations. We prove an

optimal seond order error estimate for the box sheme and we emphasize the link between this sheme

and the post-proessing of Arnold and Brezzi of the lassial mixed method.

R�esum�e. Nous e�etuons l'analyse num�erique pour le probl�eme de Poisson de deux sh�emas volumes

�nis mixtes de type Petrov-Galerkin pour des �equations sous forme divergene div'(u;ru) = f . Le

premier sh�ema, qui a �et�e introduit dans [22℄, est une g�en�eralisation �a deux dimensions du sh�ema bô�te

de Keller. Le seond sh�ema, dual du premier, est de type \ell-enter" pour u et pour le ux '. Dans

le premier sh�ema, les deux espaes d'approximation sont l'espae non onforme de Crouzeix-Raviart

pour l'inonnue primale u et l'espae de Raviart-Thomas pour le ux '. Les deux espaes test sont les

espaes des fontions onstantes par ellule, �a la fois pour l'�equation onservative et l'�equation du ux.

Nous prouvons une estimation d'erreur optimale en O(h

2

) pour le sh�ema bô�te et nous mettons en

�evidene le lien entre e sh�ema et le post-proessing d'Arnold et Brezzi de la m�ethode mixte lassique.

1991 Mathematis Subjet Classi�ation. 35J25, 65P05, 73V05, 65M15, 65N30.

.

1. Introdution

In this paper, we perform the numerial analysis of two Finite Volume shemes for onservative equations.

The �rst sheme is a Finite Volume Box Sheme, introdued in [22℄. This kind of sheme originates in the

pioneering paper by H.B. Keller [31℄, where the basi priniples of box-shemes are introdued on the model

problem of the 1D heat equation. In the lowest order version, these priniples are, for a problem in divergene

form like div'(u;ru) = f , �rstly to use degrees of freedom loated on the faes of the mesh (the edges in two

dimensions) both for the unknown u and the ux ' , seondly to build the disrete equations by averaging the

ontinuous ones onto \boxes". In this sense, they are �nite-volume shemes, that is, shemes ensuring a loal

onservation property at the level of the mesh.

Keywords and phrases: Box Method - Box Sheme - Mixed Finite Element Method - Petrov Galerkin Method - Finite Volume

Method
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2 JEAN-PIERRE CROISILLE

Beside a diret use of Keller's sheme for variants of 1D heat equations in some works, [27, 34℄, two types of

box-shemes are known in the literature.

The �rst one has been introdued in Computational Fluid Dynamis, espeially the ompressible Euler

equations. The main idea is that loating the onservative unknowns (density, momentum, energy) at the

enter of the faes of the mesh is very natural in order to build a sheme disretizing both the onservative and

the ux equations at the level of a single ell. We refer to [14{17,19{21,41,42℄ where numerial results on Euler

or Navier-Stokes equations are presented.

Another kind of box sheme is known under the name of Box Method or Finite Volume Element Method.

The design of this sheme is similar to the one of the so alled ell-vertex Finite-Volume method, (see e.g. [28℄).

The unknown u belongs to a Finite Element spae suh that P

1

or Q

1

. The disrete equations are de�ned from

averaging the ontinuous ones onto a dual box surrounding eah vertex. We refer to [4,13,30,32,37{39℄ and the

referenes therein.

The sheme introdued in [22℄ for the 2D Poisson problem on a triangular mesh is a Keller-like sheme.

Contrary to [15, 16, 19℄ where a Finite Di�erening interpretation of the disrete unknowns is used, a Finite

Element interepretation of the degrees of freedom is introdued. On a regular FEM triangulation T

h

by triangles

K, the mixed form of the Poisson problem

8

<

:

div p+ f = 0 in 


p�ru = 0 in 


u = 0 on �


(1)

is approximated by the �nite volume sheme (alled FVbox in the sequel): �nd (u

h

; p

h

) 2 P

1

n;0

� RT

0

suh

that

8

<

:

hdiv p

h

+ f; 11

K

i = 0 8 K 2 T

h

hp

h

�ru

h

; 11

K

i = 0 8 K 2 T

h

u

h

= 0 on �


(2)

In (2), P

1

n;0

is the nononforming spae of Crouzeix-Raviart, [24℄, with homogeneous boundary onditions, and

RT

0

is the div-onforming spae of Raviart-Thomas of lowest order. Note that the oupling between these two

spaes is unusual in the lassial variational mixed methods theory, [8, 9, 11, 29℄, beause this ouple of spaes

does not satisfy the Babu�ska-Brezzi ondition.

The aim of this paper is to prove that the numerial analysis of (2) an be simply performed by using the

lassial theory of the mixed Petrov-Galerkin approximations, [6,7,35℄. For simpliity of the notation, we restrit

ourselves here to the aademi Poisson problem in two dimensions, but generalizations to the 3D ase or to

more omplex onservative problems are possible.

The outline of the paper is as follows. In Set.2 we introdue the mixed formulation of whih the FVbox

sheme is an approximation. In fat, this formulation generates also a seond sheme, (alled dual FVbox), whih

is a Cell-Centered Finite Volume sheme for the ouple of unknowns (u;ru), and whih is also apparently new.

We verify that the theory of nononforming mixed approximations applies to the two shemes. A seond order

estimate is derived in Set.2.4 for the FVbox sheme, using an Aubin-Nitshe argument. Finally, we prove in

Set.3 that the FVbox sheme oinides in fat with one of the post-proessings of Arnold and Brezzi of the

lassial mixed method, [2℄, or equivalently, with the a posteriori interpretation of Marini, [33℄.

Let us mention �nally that several reent papers deal with the numerial analysis or the design of Cell-

Centered Finite Volume methods with the help of the Mixed Finite Element theory. A �rst kind of works,

[5,25,43℄ is devoted to the a posteriori interpretation of the standard mixed solution u

h

as a ell-entered Finite

Volume Method. In [40℄, a new Mixed Finite Volume Method, di�erent from the present one, is introdued

and analyzed by the mixed Petrov-Galerkin theory. Finally, for a numerial analysis of the ell-entered Finite

Volume method without referene to the FEM analogy, we refer to the exhaustive study [26℄. See also [18℄.

This work was announed in [23℄.
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2. Numerial analysis of the FVbox sheme

2.1. Two mixed forms of the Poisson problem

We onsider the bidimensional Poisson problem in mixed form in a bounded domain 
 � R

2

(M)

8

<

:

div p+ f = 0 in 


p�ru = 0 in 


u = 0 onto �


(3)

Let us reall some standard notation. We denote by L

2

the Hilbert spae of square integrable funtions

on 
, equipped with the norm juj

0;


. H

1

; H

2

are the standard Sobolev spaes equipped with their norms

kuk

1

= (juj

2

0;


+ jruj

2

0;


)

1=2

and kuk

2

= (kuk

2

1;


+ jD

2

uj

2

0;


)

1=2

. H

1

0

is the Hilbert spae of funtions u 2 H

1

having a null trae onto �
. The semi-norm juj

1;


= jruj

0;


is a norm on H

1

0

equivalent to kuk

1

. Finally

H

div

is the Hilbert spae of bidimensional vetor �elds p 2 (L

2

)

2

and div p 2 L

2

, equipped with the norm

kpk

div;


= (jpj

2

0;


+ j div pj

2

0;


)

1=2

.

If f 2 L

2

and 
 is C

2

or onvex, this problem has a unique solution u 2 H

1

0

\H

2

whih veri�es kuk

2;


� Cjf j

0;


.

We do not address here the well-known mixed formulations with unknowns (u; p) 2 H

1

0

� (L

2

)

2

or

(u; p) 2 L

2

� H

div

, wih are the ontinuous framework respetively of the lassial onforming (or nonon-

forming) method and of the mixed method of Raviart and Thomas.

The two mixed formulations that are needed in the sequel are of Petrov-Galerkin type, that is, they use two

di�erent Hilbert spaes as primal and dual spaes. The �rst one is: �nd (u; p) 2 H

1

0

�H

div

suh that

(P

1

)

�

(div p+ f; v)

0;


= 0 8 v 2 L

2

(p�ru ; q)

0;


= 0 8 q 2 (L

2

)

2

: (4)

Note that this formulation is also introdued in [40℄. The seond-one is the dual of (P

1

). It reads : �nd

(v; q) 2 L

2

� (L

2

)

2

suh that

(P

2

)

�

�(ru ; q)

0;


+ (f; u)

0;


= 0 8u 2 H

1

0

(p; q)

0;


+ (div p; v)

0;


= 0 8 p 2 H

div

: (5)

These two formulations are onneted with the bilinear ontinuous form B[(u; p) ; (v; q)℄ de�ned for

(u; p) 2 H

1

= H

1

0

�H

div

, (v; q) 2 H

2

= L

2

� (L

2

)

2

by

B[(u; p) ; (v; q)℄ = a (p; q) + b

1

(q; u) + b

2

(p; v) (6)

where a is the ontinuous bilinear form de�ned on H

div

� (L

2

)

2

by

a (p; q) = (p; q)

0;


(7)

and b

1

; b

2

are the two forms respetively de�ned for (u; q) 2 H

1

0

� (L

2

)

2

and (v; p) 2 L

2

�H

div

by

b

1

(q; u) = �(ru ; q)

0;


; b

2

(p; v) = (div p ; v)

0;


: (8)

We reall now briey the following abstrat result due to Babu�ska [3℄, Brezzi [10℄, Niolaides [35℄, Bernardi et

al. [6, 7℄, devoted to the abstrat formulation of mixed problems. Suppose given four Hilbert spaes

(X

1

; (� ; �)

X

1

) ; (X

2

; (� ; �)

X

2

) ; (M

1

; (� ; �)

M

1

) ; (M

2

; (� ; �)

M

2

) (9)

and

(a) a ontinuous bilinear form a (� ; �) : X

1

�X

2

! R.
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(b) two ontinuous bilinear forms b

1

(�; �): X

2

�M

1

! R, b

2

(�; �): X

1

�M

2

! R. We all H

1

; H

2

, the Hilbert

spaes H

1

= X

1

�M

1

; H

2

= X

2

�M

2

equipped with the norms

k(u; �)k

H

1

= (kuk

2

X

1

+ k�k

2

M

1

)

1=2

(10)

k(v; �)k

H

2

= (kvk

2

X

2

+ k�k

2

M

2

)

1=2

: (11)

The null spaes V

1

� X

1

, V

2

� X

2

are de�ned by

V

1

= fu 2 X

1

j b

2

(u; �) = 0 8� 2M

2

g (12)

V

2

= fv 2 X

2

j b

1

(v; �) = 0 8� 2M

1

g: (13)

For any l

2

2 X

0

2

; m

2

2M

0

2

, we onsider the abstrat problem (M): �nd (u; �) 2 X

1

�M

1

suh that

(M)

�

a (u; v) + b

1

(v; �) = < l

2

; v >

X

0

2

;X

2

8 v 2 X

2

b

2

(u; �) = < m

2

; � >

M

0

2

;M

2

8� 2M

2

:

(14)

Theorem 2.1. Problem (M) has a unique solution (u; �), with ontinuous dependene on the data

(l

2

;m

2

) 2 X

0

2

�M

0

2

, if and only if the four following onditions hold

(i) The bilinear form a is suh that for any v 2 V

2

sup

u2V

1

;kuk

X

1

�1

a (u; v) � � kvk

X

2

(15)

where � > 0.

(ii) For any u 2 V

1

8 v 2 V

2

a (u; v) = 0) u = 0 (16)

(iii

1

) There exists �

1

> 0 suh that for any � 2M

1

sup

v2X

2

;kvk

X

2

�1

b

1

(v; �) � �

1

k�k

M

1

(17)

(iii

2

) There exists �

2

> 0 suh that for any � 2M

2

sup

u2X

1

;kuk

X

1

�1

b

2

(u; �) � �

2

k�k

M

2

(18)

In addition, the onditions (i) , (ii) are equivalent to the dual onditions (i') , (ii').

(i') The bilinear form a is suh that for any u 2 V

1

,

sup

v2V

2

;kvk

X

2

�1

a (u; v) � �

0

kuk

X

1

(19)

where �

0

> 0.

(ii') For any v 2 V

2

,

8u 2 V

1

a (u; v) = 0) v = 0: (20)

Another ouple of equivalent onditions is (i)+(i'). Therefore, the problem (M) is well posed if and only if ,

for any (l

1

; m

1

) 2 X

0

1

�M

0

1

, so is the dual problem (M

0

) : �nd (v; �) 2 X

2

�M

2

suh that

(M

0

)

�

a (u; v) + b

2

(u; �) = < l

1

; u >

X

0

1

;X

1

8u 2 X

1

b

1

(v; �) = < m

1

; � >

M

0

1

;M

1

8� 2M

1

: (21)
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The well known partiular ase of Theorem 2.1 is when X

1

= X

2

= X ; M

1

= M

2

= M ; b

1

= b

2

. In this ase,

the two null spaes V

1

; V

2

are idential and oinide with the spae

V = fu 2 X = b (u; �) = 0 ; 8� 2Mg: (22)

Conditions (i) , (ii) , (iii

1;2

) for well-posedness of problem (M) redue to

(i) 8u 2 V ; sup

v2V;kvk

V

�1

a (u; v) � � kuk

X

(ii) for any v 2 V , a (u; v) = 0 8u 2 V ) v = 0

(iii) 8� 2M ; sup

u2X;kuk

X

�1

b (u; �) � � k�k

M

(LBB ondition):

If the bilinear form a is symmetri, the onditions (i)+(ii) are learly equivalent to the ondition (i) alone.

Furthermore, a suÆient ondition in order to have (i)+(ii) is the oerivity of the form a restrited to the

spae V � V , i.e.

(i

0

) a (u; u) � � kuk

2

X

8u 2 V :

We apply Theorem 2.1 to the two problems (P

1

), (P

2

) with the bilinear forms a; b

1

; b

2

de�ned by (7),(8).

The Hilbert spaes are

X

1

= H

div

; X

2

= (L

2

)

2

; M

1

= H

1

0

; M

2

= L

2

(23)

equipped with their natural norms.

Proposition 2.2. The bilinear forms a ; b

1

; b

2

full�ll the onditions (i) ; (ii) ; (iii

1

) ; (iii

2

) of Theorem 2.1.

Proof. The two properties (iii

1

) ; (iii

2

) are preisely the (LBB) onditions for the ouples of spaes

(X;M) = ((L

2

)

2

; H

1

0

) and (X;M) = (H

div

; L

2

) whih are true, [8℄. Furthermore, the two null spaes V

1

,

V

2

de�ned by

V

1

= fp 2 H

div

= (div p ; u)

0;


= 0 8u 2 L

2

g (24)

V

2

= fp 2 (L

2

)

2

= (p ; ru)

0;


= 0 8u 2 H

1

0

g (25)

are idential and redue to the spae V of square integrable vetor �elds, with null divergene in the spae of

distributions D

0

(
)

2

. For p 2 V , a(p; p) = jpj

2

0;


= kpk

2

div;


. Therefore, the restrition of the form a to V � V

is oerive, whih gives the result. �

We dedue from Theorem 2.1 the following result.

Corollary 2.3. For any f 2 L

2

(i) there exists a unique solution (u; p) 2 H

1

0

�H

div

of (P

1

) suh that

kuk

1;


+ kpk

div;


� C

1

jf j

0;


(26)

(ii) there exists a unique solution (v; q) 2 L

2

� (L

2

)

2

solution of (P

2

) suh that

jvj

0;


+ jqj

0;


� C

2

jf j

0;


: (27)

In addition we verify immediately that sine H

1

= H

1

0

�H

div

� L

2

� (L

2

)

2

= H

2

with dense injetion, and

that B

jH

1

�H

1

is symmetri, the solutions of the two problems (P

1

), (P

2

) are in fat in H

1

0

�H

div

and oinide

with the unique solution (u ; ru) 2 (H

1

0

\H

2

)� (H

1

)

2

of problem (M).
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2.2. The FVbox sheme of lowest order

In [22℄, we introdued the following �nite-volume sheme for the Poisson problem, alled here FVbox sheme

for simpliity: �nd (u

h

; p

h

) 2 P

1

n;0

�RT

0

suh that

8

<

:

hdiv p

h

+ f; 11

K

i = 0 8 K 2 T

h

hp

h

�ru

h

; 11

K

i = 0 8 K 2 T

h

u

h

= 0 on �


(28)

where P

1

n;0

is the nononforming spae of Crouzeix-Raviart with homogeneous boundary onditions, and RT

0

the div-onforming spae of Raviart-Thomas of lowest order de�ned respetively by

P

1

n;0

= fv

h

=8 K 2 T

h

; v

hjK

2 P

1

(K); v

h

is ontinuous at the middle

of eah edge; v

h

= 0 at the middle of eah edge on �
g (29)

RT

0

=

n

p

h

2 H

div

= p

hjK

2 RT

0

(K) 8K 2 T

h

o

(30)

where RT

0

(K) is the 3-dimensional spae

RT

0

(K) = (P

0

(K))

2

+ P

0

(K)

�

x

1

x

2

�

: (31)

This sheme is in fat a nononforming Petrov-Galerkin approximation of the mixed formulation (P

1

). Consider

any regular �nite element triangulation T

h

(in the usual sense) of the domain 
 � R

2

. The primal Hilbert spae

is H

1

= X

1

�M

1

= H

div

�H

1

0

. It is approximated by the spae K

1

h

= X

1;h

�M

1;h

with

X

1;h

= RT

0

; M

1;h

= P

1

n;0

(32)

SineM

1;h

= P

1

n;0

6�M

1

= H

1

0

, this is a nononforming approximation. We hek easily that H

1;h

= H

1

+K

1;h

is a Hilbert spae, equipped with the mesh-dependent norm k(u; p)k

1;h

de�ned by

k(u; p)k

1;h

= (kuk

2

h

+ kpk

2

div;


)

1=2

(33)

where the disrete energy norm on H

1

0

+ P

1

n;0

is given by

kuk

h

= (

X

K2T

h

jruj

2

0;K

)

1=2

(34)

Reall that this norm is equivalent to (juj

2

0;


+ kuk

2

h

)

1=2

on H

1

0

+ P

1

n;0

. The norm k(u; p)k

1;h

extends the one

of H

1

to H

1;h

.

Denoting by P

0

the spae of the funtions onstant in eah triangle K, the disrete test spae is K

2;h

=

X

2;h

�M

2;h

, with

X

2;h

= (P

0

)

2

; M

2;h

= P

0

(35)

We have K

2;h

� H

2

. By symmetry with H

1;h

, we denote H

2;h

= H

2

+K

2;h

= H

2

, and for (v; q) 2 H

2;h

, we

note

k(v; q)k

2;h

= (jvj

2

0;


+ jqj

2

0;


)

1=2

: (36)

The FVbox sheme reads now : �nd (u

h

; p

h

) 2 P

1

n;0

�RT

0

suh that for any (v

h

; q

h

) 2 P

0

� (P

0

)

2

(P

1;h

)

8

<

:

(div p

h

+ f; v

h

)

0;


= 0 8v

h

2 P

0

X

K

(p

h

�ru

h

; q

h

)

0;K

= 0 8q

h

2 (P

0

)

2

:

(37)
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The bilinear forms a

h

, b

1;h

, b

2;h

are de�ned for u

h

2 P

1

n;0

, v

h

2 P

0

, p

h

2 RT

0

, q

h

2 (P

0

)

2

by

a

h

(p

h

; q

h

) = (p

h

; q

h

)

0;


; b

1;h

(q

h

; u

h

) = �

X

K

(ru

h

; q

h

)

0;K

; b

2;h

(p

h

; v

h

) = (div p

h

; v

h

)

0;


: (38)

De�ning the ontinuous linear form m

2

on L

2

by

< m

2

; v >= �(f; v)

0;


(39)

problem (P

1;h

) an be rewritten as: �nd (u

h

; p

h

) 2 P

1

n;0

� RT

0

suh that

�

a

h

(p

h

; q

h

) + b

1;h

(q

h

; u

h

) = 0 8 q

h

2 (P

0

)

2

b

2;h

(p

h

; v

h

) = < m

2

; v

h

> 8 v

h

2 P

0

;

(40)

or equivalently

B

h

[(u

h

; p

h

); (v

h

; q

h

)℄ =< L

2

; (v

h

; q

h

) > (41)

where the bilinear form B

h

is

B

h

[(u

h

; p

h

); (v

h

; q

h

)℄ = a

h

(p

h

; q

h

) + b

1;h

(q

h

; u

h

) + b

2;h

(p

h

; v

h

) (42)

and the linear ontinuous form L

2

on L

2

� (L

2

)

2

is

< L

2

; (v; q) >= �(f; v)

0;


: (43)

Let us denote respetively byNE ; NA ; NA

b

; NA

i

the number of triangles, edges, boundary edges and internal

edges. Reall that

�

dim X

1;h

= NA ; dimX

2;h

= 2NE

dimM

1;h

= NA

i

; dimM

2;h

= NE

(44)

and that

3NE = NA+NA

i

= 2NA�NA

b

(45)

whih is equivalent to say that

dimX

1;h

+ dimM

1;h

= dimX

2;h

+ dimM

2;h

: (46)

We apply now to this partiular ase the following general stability and error estimate result for a numerial

method having the form (M

h

). Suppose we are given four �nite-dimensional spaes X

1;h

;M

1;h

; X

2;h

;M

2;h

approximating the four Hilbert spaes X

1

;M

1

; X

2

;M

2

with possibly X

i;h

6� X

i

; M

i;h

6� M

i

. In addition, we

all H

i

= X

i

�M

i

, K

i;h

= X

i;h

�M

i;h

, and we suppose that the spaes H

i;h

= H

i

+K

i;h

are Hilbert spaes

equipped with norms k:k

i;h

extending to H

i;h

the norms of H

i

. The approximation of problem (M) is: �nd

(u

h

; �

h

) 2 X

1;h

�M

1;h

suh that for any v

h

2 X

2;h

, �

h

2M

2;h

we have

(M

h

)

(

a

h

(u

h

; v

h

) + b

1;h

(v

h

; �

h

) = < l

2;h

; v

h

>

X

0

2;h

;X

2;h

b

2;h

(u

h

; �

h

) = < m

2;h

; �

h

>

M

0

2;h

;M

2;h

(47)

where l

2;h

; m

2;h

are approximations of l

2

; m

2

, and a

h

; b

1;h

; b

2;h

are approximations of the forms a; b

1

; b

2

.

Symmetrially, we introdue problem (M

0

h

) whih is the dual problem of (M

h

): �nd (v

h

; �

h

) 2 X

2;h

�M

2;h

suh that for any u

h

2 X

1;h

, �

h

2M

1;h

(M

0

h

)

(

a

h

(u

h

; v

h

) + b

2;h

(u

h

; �

h

) = < l

1;h

; u

h

>

X

0

1;h

;X

1;h

b

1;h

(v

h

; �

h

) = < m

1;h

; �

h

>

M

0

1;h

;M

1;h

(48)
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where l

1;h

; m

1;h

are approximations of l

1

; m

1

. In [35℄, Niolaides desribes this kind of problems in the

onforming ase, when in addition a

h

= a ; b

i;h

= b

i

. In [7℄, Bernardi et al. generalize the work of Niolaides to

the onforming ase but with possibly a

h

6= a ; b

i;h

6= b

i

. Here, the only di�erene is that we have to work in

the Hilbert spaes H

1;h

= H

1

+K

1;h

; H

2;h

= H

2

+K

2;h

, with a possible nononformity. Let us introdue the

disrete null spaes V

1;h

; V

2;h

V

1;h

= fu

h

2 X

1;h

= b

2;h

(u

h

; �

h

) = 0 8�

h

2M

2;h

g (49)

V

2;h

= fv

h

2 X

2;h

= b

1;h

(v

h

; �

h

) = 0 8�

h

2M

1;h

g (50)

The disrete ounterpart of Theorem 2.1 is

Theorem 2.4. Problem (M)

h

has a unique solution (u

h

; �

h

), with ontinuous dependene (uniform in h) on

the data (l

2;h

;m

2;h

) 2 X

0

2;h

�M

0

2;h

, if and only if the four following onditions hold

(i)

h

There exists � > 0 independent of h suh that for any v

h

2 V

2;h

sup

u

h

2V

1;h

;ku

h

k

X

1;h

�1

a

h

(u

h

; v

h

) � � kv

h

k

X

2;h

(51)

(ii)

h

dim X

1;h

+ dimM

1;h

= dim X

2;h

+ dimM

2;h

(iii

1

)

h

There exists �

1

> 0 independent of h suh that

sup

v

h

2X

2;h

;kv

h

k

X

2;h

�1

b

1;h

(v

h

; �

h

) � �

1

k�

h

k

M

1;h

(52)

(iii

2

)

h

There exists �

2

> 0 independent of h suh that

sup

u

h

2X

1;h

;ku

h

k

X

1;h

�1

b

2;h

(u

h

; �

h

) � �

2

k�

h

k

M

2;h

(53)

We skip the proof, sine it follows the same lines as the ones in [35℄, [7℄. We note also, as in Set. 2.1, that

onditions (i)

h

+ (ii)

h

on the form a

h

are equivalent to the dual onditions (i

0

)

h

+ (ii)

h

, where (i

0

)

h

is

(i

0

)

h

sup

v

h

2V

2;h

;kv

h

k

X

2;h

�1

a

h

(u

h

; v

h

) � �

0

ku

h

k

X

1;h

(54)

with �

0

independent of h. Therefore, the set of onditions (i)

h

; (ii)

h

; (iii

1

)

h

; (iii

2

)

h

is equivalent to the set

of onditions (i

0

)

h

; (ii)

h

; (iii

1

)

h

; (iii

2

)

h

and eah of these sets is equivalent to the well-posedness of problem

(M

h

) or of problem (M

0

h

) .

We need now the standard error estimate (alled seond Strang's Lemma), whose proof is similar to the one

when only two nononforming Hilbert spaes X

h

, M

h

our, [8℄. We denote

B

h

[(u

h

; �

h

) ; (v

h

; �

h

)℄ = a

h

(u

h

; v

h

) + b

1;h

(v

h

; �

h

) + b

2;h

(u

h

; �

h

) (55)

and

< L

h

; (v

h

; �

h

) >=< l

2;h

; v

h

>

X

0

2;h

;X

2;h

+ < m

2;h

; �

h

>

M

0

2;h

;M

2;h

(56)

we have the following
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Theorem 2.5. There exists a onstant C > 0 independant of h suh that

k(u; �)� (u

h

; �

h

)k

1;h

� C

(

inf

(~u

h

;

~

�

h

)2K

1;h

[ k(u; �)� (~u

h

;

~

�

h

)k

1;h

℄

+ sup

(~v

h

;~�

h

)2K

2;h

jB

h

[(u; �); (~v

h

; ~�

h

)℄� < L

h

; (~v

h

; ~�

h

) > j

k(~v

h

; ~�

h

)k

2;h

)

:

Applying Theorem 2.4 and Theorem 2.5 to disrete problem (P

1;h

), we obtain the following proposition, whih

summarizes in a onize way the result of [22℄.

Proposition 2.6. (a) Problem (P

1;h

) has a unique solution (u

h

; p

h

) 2 P

1

n;0

�RT

0

suh that

ku

h

k

h

+ kp

h

k

div;


� C jf j

0;


(57)

(b) For f 2 H

1

(
), the solution (u

h

; p

h

) veri�es the error estimate

ku� u

h

k

h

+ kp� p

h

k

div;


� C h kfk

1;


(58)

where C stands for a onstant independent of h.

Proof. The spaes X

1;h

, M

1;h

, X

2;h

, M

2;h

are spei�ed in (32) and (35). The bilinear forms a

h

, b

1;h

, b

2;h

, B

h

are given in (38), (41). The forms l

2;h

, m

2;h

are given by < l

2;h

; q

h

>= 0, < m

2;h

; v

h

>= �(f; v

h

)

0;


. This

gives km

2;h

k � jf j

0;


.

(a) Aording to Theorem 2.4, we hek now the onditions (i)

h

, (ii)

h

, (iii

1

)

h

, (iii

2

)

h

for the forms a

h

; b

1;h

; b

2;h

:

� (i)

h

: The spaes V

1;h

; V

2;h

are

V

1;h

= fp 2 RT

0

= (div p; v)

0;


= 0 8 v 2 P

0

g (59)

V

2;h

= fq 2 (P

0

)

2

=

X

K

(q ; ru)

0;K

= 0 8u 2 P

1

n;0

g: (60)

The dimensions of these spaes are

dimV

1;h

= dimX

1;h

� dimM

2;h

= NA�NE (61)

dimV

2;h

= dimX

2;h

� dimM

1;h

= 2NE �NA

i

: (62)

Therefore, due to (45), dim V

1;h

= dimV

2;h

: We prove now that in fat, V

1;h

= V

2;h

. Suppose given p 2 V

1;h

.

Then, div p

jK

= 0 for any K 2 T

h

, therefore p 2 (P

0

)

2

. Moreover, for any u 2 P

1

n;0

,

X

K

(p ; ru)

0;K

= �

X

K

(div p; u)

0;K

+

X

K

Z

�K

(p � �)u d� (63)

=

X

K

Z

�K

(p � �)u d� = �

X

a2A

Z

a

(p � �

a

) [u℄ d�: (64)

where [u℄ stands for the jump of u in the diretion of �

a

. (On �
, we put [u℄ = �u

inside

). Sine p 2 X

1;h

� H

div

,

(p � �

a

) is onstant along eah edge a. Moreover, sine u is ontinuous at the middle of eah edge, the average

of [u℄ along a is zero. Therefore (64) = 0, whih gives that p 2 V

2;h

. This proves that V

1;h

� V

2;h

: By equality

of the dimensions, we obtain

V

1;h

= V

2;h

= V

h

: (65)
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Consequently, k k

div;


oinides on V

h

with j j

0;


. Therefore the ondition (i

h

) holds beause we have for any

q 2 V

h

sup

p2V

h

; kpk

div;


�1

(p; q)

0;


= jqj

0;


: (66)

� (ii)

h

: Condition (ii)

h

is just (46).

� (iii

1

)

h

: We have to prove that for any u 2M

1;h

sup

q2(P

0

)

2

;jqj

0;


�1

b

1;h

(q; u) � �

1

kuk

h

(67)

Taking p =

1

jruj

0;


X

K

ru

jK

11

K

(x), we get

sup

q2(P

0

)

2

;jqj

0;


�1

b

1;h

(q; u) � b

1;h

(p; u) = kuk

h

(68)

whih proves the result.

� (iii

2

)

h

: This is the well-known inf-sup ondition of the standard mixed method of Raviart-Thomas for the

ouple of spaes (v; p) 2 P

0

�RT

0

, i.e.

sup

p2RT

0

;kpk

div;


�1

b

2;h

(p; v) � �

2

jvj

0;


: (69)

We refer to [36℄ for the proof.

(b) We prove now the error estimate (58). We dedue from Theorem 2.5 (see (42), (43) for the notation), that :

ku� u

h

k

h

+ kp� p

h

k

div;


� C

(

inf

(~u

h

; ~p

h

)2P

1

n;0

�RT

0

�

ku� ~u

h

k

h

+ kp� ~p

h

k

div;


�

+ sup

(~v

h

;~q

h

)2P

0

�(P

0

)

2

jB

h

[(u; p) ; (~v

h

; ~q

h

)℄� < L

2

; (~v

h

; ~q

h

) > j

k(~v

h

; ~q

h

)k

2;h

)

: (70)

Sine p = ru and div p+ f = 0, we have for any (~v

h

; ~q

h

) 2 P

0

� (P

0

)

2

,

B

h

[(u; p) ; (~v

h

; ~q

h

)℄� < L

2

; (~v

h

; ~q

h

) >=

X

K

(p�ru ; ~q

h

)

0;K

+ (div p ; ~v

h

)

0;


+ (f ; ~v

h

)

0;


= 0

Thus, the error method vanishes. Finally, the standard estimate of the interpolation error, ( [36℄, [8℄)

inf

~u

h

2P

1

n;0

ku� ~u

h

k

h

+ inf

~p

h

2RT

0

kp� ~p

h

k

div;


� Ch kfk

1;


(72)

yields the result. �

2.3. The dual FVbox sheme

We onsider now disrete problem (P

2;h

), dual of (P

1;h

), onneted with the mixed formulation (P

2

) : �nd

(v

h

; q

h

) 2 P

0

� (P

0

)

2

suh that (see (48))

(P

2;h

)

8

<

:

�

X

K

(ru

h

; q

h

)

0;K

= �(f; u

h

)

0;


8u

h

2 P

1

n;0

(p

h

; q

h

)

0;


+ (div p

h

; v

h

)

0;


= 0 8p

h

2 RT

0

(73)
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(P

2;h

) an be rewritten, with the help of the form B

h

: �nd (v

h

; q

h

) 2 P

0

� (P

0

)

2

suh that for any (u

h

; p

h

) 2

P

1

n;0

�RT

0

B

h

[(u

h

; p

h

) ; (v

h

; q

h

)℄ =< L

1;h

; (u

h

; p

h

) > (74)

where the linear form L

1;h

2 H

0

1;h

is de�ned for (u

h

; p

h

) 2 H

1;h

by

< L

1;h

; (u

h

; p

h

) >=< m

1;h

; u

h

>

M

0

1;h

;M

1;h

+ < l

1;h

; p

h

>

X

0

1;h

;X

1;h

(75)

with < m

1;h

; u

h

>

M

0

1;h

;M

1;h

= �(f; u

h

)

0;


and < l

1;h

; u

h

>

X

0

1;h

;X

1;h

= 0. Reall that (v; q) 2 L

2

� (L

2

)

2

is the

solution of the dual problem (P

2

). We have (v; q) = (u; p) where (u; p) is the solution of the primal problem

(P

1

). Symmetrially to Proposition 2.6, we have the following result

Proposition 2.7. (a) Problem (P

2;h

) has a unique solution (v

h

; q

h

) 2 P

0

� (P

0

)

2

suh that

jv

h

j

0;


+ jq

h

j

0;


� C jf j

0;


: (76)

with C independant of h.

(b) This solution satis�es the error estimate

jv � v

h

j

0;


+ jq � q

h

j

0;


� Ch jf j

0;


: (77)

with C independant of h.

Proof. (a) By Theorem 2.4, a set of neessary and suÆient onditions in order for problem (P

2;h

) to be

well posed are onditions (i

0

)

h

; (ii)

h

; (iii

1

)

h

; (iii

2

)

h

. It results from the remark following Theorem 2.4, that

onditions (i

0

)

h

; (ii)

h

are equivalent to (iii)

h

; (iv)

h

, whih are true by Proposition 2.6. We onlude by verifying

that km

1;h

k � Cjf j

0;


.

(b) From Theorem 2.5 applied to (48), we have the error estimate

jv � v

h

j

0;


+ jq � q

h

j

0;


� C

(

inf

(~v

h

;~q

h

)2P

0

�(P

0

)

2

�

jv � ~v

h

j

0;


+ jq � ~q

h

j

0;


�

+ sup

(~u

h

;~p

h

)2P

1

n;0

�RT

0

jB

h

[(~u

h

; ~p

h

) ; (v ; q)℄� < L

1;h

; (~u

h

; ~p

h

) > j

k(~u

h

; ~p

h

)k

1;h

)

: (78)

Estimating the onsisteny error, we have for any (~u

h

; ~p

h

) 2 P

1

n;0

�RT

0

,

B

h

[(~u

h

; ~p

h

) ; (v; q)℄� < L

1;h

; (~u

h

; ~p

h

) > = (~p

h

; q)

0;


+ (div ~p

h

; v)

0;


�

X

K

(r ~u

h

; q)

0;K

+ (f; ~u

h

)

0;


: (79)

Beause X

1;h

� H

div

, we have, in view of (5)

2

,

(~p

h

; q)

0;


+ (div ~p

h

; v)

0;


= 0 8 ~p

h

2 RT

0

: (80)

Therefore, sine q is in fat in H

div

,

�

X

K

(r ~u

h

; q)

0;K

+ (f ; ~u

h

)

0;


=

X

K

(~u

h

; div q)

0;K

+ (f ; ~u

h

)

0;


�

X

K

Z

�K

~u

h

(q � �) d�

= �

X

K

X

e2�K

Z

e

~u

h

(q � �) d� + (~u

h

; div q + f)

0;


: (81)
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The seond term in (81) is zero in view of (P

2

)

1

. The �rst term in (81) is rewritten as (A

i

is the set of the

internal edges, and A

b

the set of the boundary edges)

X

a2A

i

Z

a

[~u

h

℄ (q � �

a

) d� �

X

a2A

b

Z

a

~u

h

(q � �

a

) d� (82)

By the ontinuity of ~u

h

at the middle of eah edge, and sine ~u

h

(x

a

) = 0 for x

a

the middle of an edge a on �
,

we have (reall that ~u

hja

is aÆne)

Z

a2A

i

[~u

h

℄ d� = 0 ;

Z

a2A

b

~u

h

d� = 0: (83)

Therefore, denoting by ~u

h;i

, i = 1; 2, the traes of ~u

h

on eah side of the edge a, and by �

a

~u

h

the ommon

mean value of ~u

h;1

; ~u

h;2

along the edge a, we obtain that (82) an be rewritten as

X

a2A

i

[

Z

a

(~u

h;2

��

a

~u

h

) (q � �

a

) d� �

Z

a

(~u

h;1

��

a

~u

h

)(q � �

a

) d�℄�

X

a2A

b

Z

a

(~u

h;1

��

a

~u

h

) (q � �

a

) d�: (84)

Thus, by Lemma 3 of [24℄, we get for eah internal edge a 2 A

i

�

�

Z

a2A

i

[~u

h

℄ (q � �

a

) d�

�

�

� Ch

�

jqj

1;K

1

j~u

h

j

1;K

1

+ jqj

1;K

2

j~u

h

j

1;K

2

�

(85)

and for eah boundary edge a 2 A

b

�

�

Z

a2A

b

~u

h

(q � �

a

) d�

�

�

� Ch jqj

1;K

1

j~u

h

j

1;K

1

(86)

where a is oriented from K

1

towards K

2

, and C is a onstant independent of h. We dedue �nally from (85),

(86) by the Cauhy-Shwarz inequality the bound

�

�

B

h

[(~u

h

; ~p

h

) ; (v; q)℄� < L

1;h

; (~u

h

; ~p

h

) >

�

�

� 3Ch jqj

1;


k~u

h

k

h

:

whih gives the following estimate of the onsisteny error in (78)

sup

(~u

h

;~p

h

)2P

1

n;0

�RT

0

jB

h

[(~u

h

; ~p

h

) ; (v; q)℄� < L

1;h

; (~u

h

; ~p

h

) > j

k~u

h

; ~p

h

)k

1;h

� 3 Chjqj

1;


:

For the interpolation error, we have the two standard estimates

inf

~v

h

2P

0

jv � ~v

h

j

0;


� C h jvj

1;


; inf

~q

h

2(P

0

)

2

jq � ~q

h

j

0;


� C h jqj

1;


:

Sine jvj

1;


� kvk

1;


� jf j

0;


; jqj

1;


� jf j

0;


we get the result. �

2.4. Seond order error estimate

In this setion, we derive an O (h

2

) error estimate in the L

2

norm for ju�u

h

j

0;


. Suh an estimate makes use

in the standard onforming �nite element method of the Aubin-Nitshe argument. Reall that this argument

leads to an estimate like

ju� u

h

j

0;


� Cku� u

h

k

1;


kv � v

h

k

1;


(90)
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where v; v

h

are the ontinuous solution and disrete approximation of an adjoint problem. Therefore a �rst

order error estimate in the H

1

norm for u and v yields the seond order onvergene of ju � u

h

j

0;


. Here, we

follow the same priniple.

Theorem 2.8. The solution u

h

2 P

1

n;0

of the FVbox sheme (P

1;h

) satis�es the seond order error estimate

ju� u

h

j

0;


� C h

2

kfk

1;


(91)

where C is independant of h.

Proof. We follow the same priniple as in the proof of the seond order error estimate for the standard nonon-

forming FEM method in P

1

n;0

, [8℄.

We start from

ju� u

h

j

0;


= sup

g2L

2

;g 6=0

(u� u

h

; g)

0;


jgj

0;


(92)

To eah g 2 L

2

(
), orresponds the solution (v

g

; q

g

) 2 L

2

� (L

2

)

2

of problem (P

2

)

g

B

h

[(u; p) ; (v

g

; q

g

)℄ = �(g; u)

0;


8 (u; p) 2 H

1

0

�H

div

(93)

whih is also the unique solution in H

1

0

�H

div

of

B

h

[(v

g

; q

g

) ; (v ; q)℄ = �(g; v)

0;


8 (v; q) 2 L

2

� (L

2

)

2

: (94)

We denote by (v

g

h

; q

g

h

) 2 P

0

� (P

0

)

2

the disrete solution of problem (P

2;h

)

g

B

h

[(~u; ~p) ; (v

g

h

; q

g

h

)℄ = �(g; ~u)

0;


8 (~u; ~p) 2 P

1

n;0

�RT

0

: (95)

In addition, reall that (u; p) 2 H

1

0

�H

div

and (u

h

; p

h

) 2 P

1

n;0

�RT

0

are solutions of the ontinuous and FVbox

problems (4), (37).

For any g 2 L

2

, we have

�(u� u

h

; g)

0;


= B

h

[(u; p) ; (v

g

; q

g

)℄�B

h

[(u

h

; p

h

) ; (v

g

h

; q

g

h

)℄

= B

h

[(u; p)� (u

h

; p

h

) ; (v

g

; q

g

)� (v

g

h

; q

g

h

)℄ (I)

+ B

h

[(u

h

; p

h

) ; (v

g

; q

g

)� (v

g

h

; q

g

h

)℄ (II)

+ B

h

[(u; p)� (u

h

; p

h

) ; (v

g

h

; q

g

h

)℄: (III)

Sine (v

g

h

; q

g

h

) 2 P

0

� (P

0

)

2

� L

2

� (L

2

)

2

, we have (III) = 0, by subtrating (37) from (4). Moreover, we

dedue from the two standard error estimates (58), (77) that

j(I)j � Ck(u; p)� (u

h

; p

h

)k

1;h

k(v

g

; q

g

)� (v

g

h

; q

g

h

)k

2;h

(96)

� Ch

2

jgj

0;


kfk

1;


: (97)

Finally, we have for (II),

�(II) = B

h

[(u; p)� (u

h

; p

h

) ; (v

g

; q

g

)℄ + (g ;u� u

h

)

=

X

K

(p� p

h

�r(u� u

h

); q

g

)

0;K

+ (div(p� p

h

); v

g

)

0;


+ (g; u� u

h

)

0;


:

Sine

X

K

(p� p

h

; q

g

)

0;K

= (p� p

h

;rv

g

)

0;


= �(div(p� p

h

) ; v

g

)

0;


, we obtain

�(II) = �

X

K

(r(u� u

h

) ; q

g

)

0;K

+ (g ; u� u

h

)

0;


(98)
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and by the Green formula on eah triangle K

�(II) = �

X

K

Z

�K

(u� u

h

)(q

g

:�) d� =

X

a2A

Z

a

[u� u

h

℄(q

g

:�

a

) d�: (99)

Calling �

a

the averaging operator on the edge a, we have [u� u

h

℄ = [u� u

h

℄��

a

([u� u

h

℄), sine [u℄ = 0 and

�

a

[u

h

℄ = 0. Therefore

j(II)j �

X

a2A

Z

a

jf[u� u

h

℄��

a

([u� u

h

℄)g(q

g

:�

a

) jd�

� 3Ch

X

K

ju� u

h

j

1;K

jq

g

j

1;K

� 3Chku� u

h

k

h

jq

g

j

1;


� C

0

h

2

kfk

1;


jv

g

j

2;


� C

0

h

2

kfk

1;


jgj

0;


Finally, we get the estimate

j(u� u

h

; g)

0;


j � j(I)j+ j(II)j+ j(III)j (100)

� Ch

2

kfk

1;


jgj

0;


: (101)

Dividing (100) by jgj

0;


and taking the suppremum on g 6= 0, we get the desired result. �

3. Further remarks

3.1. Comparison with the nononforming method

The standard nononforming method for (3) is: �nd ~u

h

2 P

1

n;0

suh that

X

K

(r~u

h

;rv

h

)

0;K

= (f; v

h

)

0;


8v

h

2 P

1

n;0

(102)

For (102), the two following error estimates hold, [8℄

ku� u

h

k

h

� Chjf j

0;


ju� u

h

j

0;


� Ch

2

jf j

0;


(103)

Denoting by � the orthogonal projetor form L

2

onto P

0

, we have that u

h

in (P

1;h

) is the following modi�ation

of (102).

Proposition 3.1. The funtion u

h

in (P

1;h

) is the solution of the sheme : �nd u

h

2 P

1

n;0

suh that

X

K

(ru

h

;rv

h

)

0;K

= (�f; v

h

)

0;


8v

h

2 P

1

n;0

(104)

Proof. Taking q

h

= rv

h

in (P

1;h

) in (37), and taking in aount that div p

hjK

is onstant, we obtain

X

K

(ru

h

;rv

h

)

0;K

= �

X

K

(div p

h

; v

h

)

0;K

�

X

a

Z

a

(p

h

:�)[v

h

℄ d� = �

X

K

(div p

h

;� v

h

)

0;K

(105)

= (f;� v

h

)

0;


= (� f; v

h

)

0;


(106)

�
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Note that we an dedue from Prop. 3.1 that ku� u

h

k

h

� Chjf j

0;


, whih is better than (58). (The bound

kfk

1;


is due in (58) to the interpolation error for p

h

). However, the seond order error estimate dedued from

(104) is idential to the one in Theorem 2.8.

3.2. Comparison with the mixed method

The question arises naturally about the link between the FVbox solution (u

h

; p

h

) of (P

1;h

) and the solution

(u

h

; p

h

) of the standard mixed method of Raviart-Thomas. Reall that both p

h

; p

h

belong to the same spae,

namely the spae RT

0

. In addition, alling � v

h

the orthogonal projetion onto the spae P

0

of a funtion

v

h

2 P

1

n;0

, it is interesting to ompare u

h

and �u

h

. We have

Proposition 3.2. (i) p

h

= p

h

. In other words, p

h

onides with the approximate gradient of u provided by the

mixed method.

(ii) We have

u

h

= �u

h

+

1

4

X

K

(�f)

K

�

2

K

11

K

(107)

where �

K

is the gyration radius of K de�ned by jKj �

2

K

= j

��!

g

K

xj

2

0;K

and g

K

is the baryentre of K.

Proof. (i) The mixed sheme is : �nd (u

h

; p

h

) 2 P

0

�RT

0

suh that :

�

(div p

h

+ f; ~v)

0;


= 0 8 ~v 2 P

0

(p

h

; ~q)

0;


+ (u

h

; div ~q)

0;


= 0 8 ~q 2 RT

0

(108)

whereas the FVbox sheme is : �nd (u

h

; p

h

) 2 P

1

n;0

�RT

0

suh that

8

<

:

(div p

h

+ f ; ~v)

0;


= 0 8 ~v 2 P

0

(p

h

; q)

0;


�

X

K

(ru

h

; q)

0;K

= 0 8 q 2 (P

0

)

2

:

(109)

De�ning p̂ 2 RT

0

by p̂ = p

h

� p

h

, we get by subtrating (108)

1

, from (109)

1

,

(div p̂ ; ~v)

0;


= 0 8 ~v 2 P

0

(110)

therefore p̂ 2 V

h

; the ommon null spae of the bilinear forms b

1;h

; b

2;h

, (see (65)). Reall that this spae is

V

h

= fp

h

2 RT

0

= (div p

h

; v

h

)

0;


= 0 ; 8 v

h

2 P

0

g

=

(

q

h

2 (P

0

)

2

=

X

K

(q

h

; ru

h

)

0;K

= 0 ; 8u

h

2 P

1

n;0

)

= RT

0

\ (P

0

)

2

:

Therefore, subtrating (108)

2

from (109)

2

, we get for any q 2 V

h

:

(p̂ ; q)

0;


=

X

K

(ru

h

; q)

0;K

+ (u

h

; div q)

0;


= 0: (111)

Taking q = p̂, we obtain p̂ = 0, that is p

h

= p

h

:

(ii) For any ~q 2 RT

0

, we estimate now (�u

h

; div ~q). We have

(�u

h

; div ~q)

0;


= (u

h

; div ~q)

0;


= �(ru

h

; ~q)

0;


�

X

a2A

i

Z

a

[u

h

℄(~q � �

a

) (112)
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The seond term in the right hand side of (112) vanishes (~q � �

a

is onstant on a). Now, denoting g

K

the

baryentre of the triangle K, we have the two following identities

~q = � ~q +

1

2

X

K

(div ~q)

K

��!

g

K

x 11

K

(113)

ru

h

= p

h

�

1

2

X

K

(div p

h

)

K

��!

g

K

x 11

K

(114)

We dedue from (113), (114) that the �rst term in the right hand side of (112) is

�(ru

h

; ~q)

0;


= �(p

h

; ~q)

0;


+

1

4

X

K

(div p

h

)

K

(div ~q)

K

j

��!

g

K

xj

2

0;K

(115)

De�ning the gyration radius �

K

of the triangle K by jKj �

2

K

= j

��!

g

K

xj

2

0;K

, (f [5℄), we dedue from (112), (115)

and from (div p

h

)

K

= �(�f)

K

that

(�u

h

+

1

4

X

K

(�f)

K

�

2

K

11

K

; div ~q)

0;


+ (p

h

; ~q)

0;


= 0 8~q 2 RT

0

(116)

It results from (108) that

u

h

= �u

h

+

1

4

X

K

(�f)

K

�

2

K

11

K

(117)

We dedue easily from (117) the estimate j�u

h

� u

h

j

0;


� Ch

2

jf j

0;


. �

3.3. Comparison with the Lagrange multipliers method

In [2℄, Arnold and Brezzi desribe an interpretation of the mixed method of Raviart and Thomas based on

the relaxation of the divergene onformity of the RT

0

(K) element by means of a Lagrange multiplier on eah

edge. See also [12℄. Let us desribe briey the method. We need only the lowest order version in the sequel.

We all RT

0

the �nite element spae onstruted as

RT

0

= fp

h

(x) =

X

K

p

hjK

(x) 11

K

(x) = p

hjK

2 RT

0

(K)g (118)

We have dim(RT

0

) = 3NE, and RT

0

= RT

0

\H

div

. The spae of Lagrange multipliers is the set of funtions

de�ned only on the edges A. The lowest order version is simply the funtions onstant on eah edge a 2 A

S

0

0

= f�

h

(x) = �

a

; x 2 a ; a 2 A

i

g (119)

The sheme is : �nd (u

h

; p

h

; �

h

) 2 P

0

�RT

0

� S

0

0

suh that for any (~v; ~q; ~�) 2 P

0

�RT

0

� S

0

0

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

X

K

(div p

h

+ f ; ~v)

0;K

= 0

(p

h

; ~q)

0;


+

X

K

h

(u

h

; div ~q)

0;K

�

Z

�K

�

h

(~q � �) d�

i

= 0

X

K

Z

�K

~� (p

h

� �) = 0

(120)

System (120) has a unique solution (u

h

; p

h

; �

h

) 2 P

0

� RT

0

� S

0

0

. Moreover (u

h

; p

h

) 2 P

0

� RT

0

is the

standard mixed solution of (108). We may now lift the funtion (u

h

; �

h

) in an approximation û

h

lying in a
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spae of higher preision than P

0

. Two hoies are presented in [2℄. The �rst one is simply to take û

h

2 P

1

n

suh that

�

a

û

h

= �

h;a

8 a 2 A

i

: (121)

The seond one is to take û

h

2 N = P

1

n

+B

3

where B

3

is the "bubble" spae

B

3

= fu

h

= u

hjK

2 V et (�

1

(x)�

2

(x)�

3

(x)) ; x 2 Kg: (122)

The lifting û

h

is uniquely de�ned by

�

K

û

h

= �u

h

; �

a

û

h

= �

h;a

: (123)

�

a

and �

K

are the orthogonal projetions onto the onstants in L

2

(K) and L

2

(a). In fat, it an be proved,

that the lowest order version of the FVbox sheme oinides with the lifting (121).

Proposition 3.3. The solution (u

h

; p

h

) of the FVbox sheme (P

1;h

) oinides with the (û

h

; p

h

) solution of

sheme (120), where û

h

is the P

1

n

interpolation (121).

Proof. Reall that p

h

= p

h

, where p

h

2 RT

0

is the solution of the mixed method. For any ~q 2 RT

0

, ~q � � is

onstant along eah edge e 2 �K. Therefore it is suÆient to prove that (u

h

; p

h

) veri�es, for any ~q 2 RT

0

(p

h

; ~q)

0;


+

X

K

h

(u

h

; div ~q)

0;K

�

Z

�K

u

h

(~q � �) d�

i

= 0: (124)

Sine ~q(x)

K

= (�~q)

K

+

1

2

(div ~q)

K

��!

g

K

x, we have

(p

h

; ~q)

0;


= (p

h

; � ~q)

0;


+

1

2

�

p

h

;

X

K

(div ~q)

K

��!

g

K

x 11

K

�

0;


=

X

K

(ru

h

; � ~q)

0;K

+

1

2

�

p

h

;

X

K

(div ~q)

K

��!

g

K

x 11

K

�

0;


Replaing p

hjK

by its value p

hjK

= (� p

h

)

K

�

1

2

(�f)

K

��!

g

K

x we �nd

(p

h

; ~q)

0;


=

X

K

(ru

h

; ~q)

0;K

�

1

4

X

K

jKj (�f)

K

(div ~q)

K

�

2

K

= �

X

K

h

(u

h

; div ~q)

0;K

�

Z

�K

u

h

(~q � �) d�

i

�

1

4

X

K

jKj(�f)

K

(div ~q)

K

�

2

K

= �

X

K

h

((�u

h

)

K

; div ~q)

0;K

�

Z

�K

u

h

(~q � �) d�

i

�

1

4

X

K

jKj (�f)

K

(div ~q)

K

�

2

K

Using (107) we obtain �nally

(p

h

; ~q)

0;


= �

X

K

h

(u

h

; div ~q)

0;K

�

Z

�K

u

h

(~q � �) d�

i

(125)

whih is the desired result. �

3.4. Final remark

In this paper, we have emphasized the mixed Petrov-Galerkin struture of the sheme introdued in [22℄.

This struture allows to dedue the numerial analysis of this sheme from the standard theory. This approah

may also be applied to shemes of the same kind with di�erent hoies of the four spaes X

1;h

; X

2;h

;M

1;h

;M

2;h

.
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Another possibility is to eliminate p

h

loally in eah ell, and to obtain the error estimates for u

h

from the

sheme (104). The error estimate for p

h

is dedued afterwards, as in [22℄, from the loal representation formula

p

h;K

= ru

h;K

� jKj (�f)

K

P

K

(x) (126)

where P

K

(x) =

1

2jKj

��!

g

K

x.

Let us mention �nally that the method given by Marini, [33℄, for omputing the mixed solution (u

h

; p

h

) of

Raviart-Thomas (108), amounts preisely to ompute the solution u

h

in (104) and to express afterwards p

h

by (126). The key point of the present paper is that this a posteriori interpretation is nothing but the FVbox

sheme (37). This sheme has the advantage to give a diret aess to an approximation (u

h

; p

h

), aÆne per ell,

without any referene to the mixed method.

The author aknowledges friendly J-J. Chattot, B. Courbet, F. Dubois, A. Debusshe, V. Girault, J. Laminie, for stim-

ulating disussions about box shemes, mixed methods and least squares methods. He aknowledges also an anonymous

referee for helpful remarks.
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