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In this paper, we introduce three schemes for the Poisson problem in 2D on triangular meshes,
generalizing the FVbox scheme introduced in [10]. In this kind of scheme, the approximation
is performed on the mixed form of the problem, but contrary to the standard mixed method,
with a pair of trial spaces different from the pair of test spaces. The latter is made of Galerkin-
discontinuous spaces on an unique mesh. The first scheme uses as trial spaces the P! noncon-
forming space of Crouzeix-Raviart both for u and for the flux p = Vwu. In the two others the
quadratic nonconforming space of Fortin and Soulie is used. An important feature of all these
schemes is that they are equivalent to a first scheme in w only and an explicit representation
formula for the flux p = Vu. The numerical analysis of the schemes is performed using this
property. © (2000) John Wiley & Sons, Inc.

[. INTRODUCTION

The aim of this paper is to introduce three box schemes for elliptic problems, based on
the model of [10, 11]. This class of schemes belongs to the category of so called mixed
Petrov-Galerkin methods. This means that a mixed form of the problem is discretized
with trial functions different from the test functions. The interest of these schemes is
that they combine the advantages of the finite volumes and of the finite element mixed
methods within a simple framework. Their main features are:

- the two equations of the mixed form are discretised at the level of the same mesh, by
simply averaging (Finite Volume Methods). One speaks of “compact schemes”.

- standard mixed finite elements for trial spaces are used. The test functions are of
Galerkin-discontinuous type.

- these schemes can be seen as a natural generalisation of Keller’s box scheme [19] (in-
terface degrees of freedom for u and Vu).

In the sequel, we consider a bounded domain Q C R? with regular or convex boundary
in order for the homogeneous Poisson problem to be well-posed in H} () N HZ (Q) with
data in L?(Q2). The mixed form we consider is: find (u,p) € My x X; such that

{ (divp+ f,v)o0 =0 Vv € M, (1.1)

(p—Vu,q)o0=0 VYge X,
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The standard setting holds with M; x X; = Hi x Hgyy (or H} x (HY)? in Sect. 2)
and My x Xo = L? x (L?)2. Recall that the divergence conforming space is Hgi, (Q) =
{p € (L*(Q))*/divp € L*(Q)}. We denote |- |ma , || |lme the m-semi norm and
the m norm on H™(2). In addition, we note ||pllaiv.o = (|pl3 ¢ + |divpl3o)'/? and
|pldiv,2 = | div plo.o . The approximation of (1.1) on a regular mesh 7 made of triangles
K is performed by the scheme

Z (divph + f, 'Uh)O,K =0 Vv, € M27h

KETn (1.2)
> (pn = Vun, gn)ox =0 Ygu € Xop

KeTn

In [10, 11], the scheme (1.2) is addressed with the discrete spaces (Miyp, X14) =
(Py.o, RT®) (P nonconforming space of Crouzeix-Raviart and divergence conforming
space of Raviart-Thomas of lowest order). Note that this scheme has also been ad-
dressed in [21] , and that it coincides with an hybrid form of the standard mixed method
of Raviart-Thomas (]2, 20]).

In this paper, we are going to describe schemes of type (1.2) with discrete spaces
M p, X1, each of one being non-conforming in Hy , Haiy. The interest of this class
of schemes is that they use trial spaces of higher order than the standard Galerkin
mixed methods, due to the fact the the Babugka-Brezzi condition takes place between
My p x X1, and Mz, X X5 p and not between M j, and X, . In addition, contrary to
many other schemes combining the mixed finite element and the finite volume formalism
[4, 17, 22, 25], only one mesh is used. The price to pay for that advantage is the difficulty
to find spaces M; , x Xi p and My j, x Xy coupled by a stability condition. A minimal
request with this respect is of course that dim M; , +dim X, j = dim My +dim Xs 5 .

The numerical analysis of (1.2) can be performed in two ways. The first one is proving
the Babuska-Brezzi stability conditions [3, 7, 22, 5] for the underlying bilinear form By,
on (M1 x X1,) X (Ma,, X Xap) defined by

By [(un, pn) 5 (v, n)] = (Pr s @n)o,0 — Z (Vun, gn)ox + Z (div pn, vn)o,x (1.3)
K K

The other possibility we follow throughout this paper, is to express the flux py in function
of up and f by a purely local formula. Therefore, our schemes are equivalent to a non-
conforming scheme in w;, and a local reconstruction formula of pp in function of wy,.
Note that the non-conforming methods have been introduced in works such as [12], [24].
They have recently gained a renewal of interest ([18], [13]) especially as a posteriori
interpretations of mixed hybridized methods. That topics is systematically explored in
[1], where a broad number of standard mixed methods is proved to be equivalent to a
non-conforming method in the principal unknow and a local reconstruction of the flux.
However, the situation is much more simpler in our schemes since no hybridization is
required to get this equivalence.

Let us give now some standard notations. We introduce the mesh dependent spaces
(H§ + M 1), (Haiv + X1,1), equipped with the mesh dependent norms

2 1/2 2 2 \1/2 1
uln = (32 IVuldi) ™ 5 llullin = (uBg + [wE)Y? , we By +Min (14)
K
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oo Y2 2 2 1/2
|Pldiv,n = (E | div p|0,K) i lpllaiv.e = (P10, + IPlaiv,e) /"5 P € Haiv + X1,n (1.5)
K

We denote also Hyp = (H + Miy) x (Haiy + X1,0), Hap = L? x (L?)? and by
H ||H1.h7 || ||H2,h the norms

)1/2

1w, D)l = (lllf g+ 121En) 2 5 1@, Dl = (0l 0 + lal.0)' (1.6)

By, is the bilinear continuous form onto H; p x Ha

Bh [(U,p) 5 (’U, q)] = (p7 q)O,Q - Z (VU, q)07K + Z (le D, ’U)07K (]-7)
K K

We consider a regular finite element triangular mesh 7j, in the usual sense. The geometri-
cal notation is as follows. The triangles are denoted by K. We denote by 0K = {e,e’, e’}
the edges of K . The edges e, €', e are opposite to the vertices S, S’, S” and to the angles
0,0',0". The barycentric coordinates corresponding to S,S’,S” are As, As/, Asv. The
outgoing unitary normal vector to e of each tringle K is vk ., the corresponding tan-
gential vector is 7. = Rz (Vk,e), where R, xis the positive rotation of angle 5. The
barycenter of K is zx and the midedge of e is .. We note a € A = A; U A, the edges
with global numbering. The sets A; (resp. Ap) denote the internal (resp. boundary)
edges. The number of triangles is NE. The number of edges (resp. internal, boundary)
is NA (resp. NA;, NA,). The number of vertices (resp. internal, boundary) is NV
(resp. NV;, NV}). The Euler relations write

3SNE+NA, = 2NA (1.8)
NE-NA+NV =1 (1.9)

The gradient of f is V f = [0, f, 0, f] and the 2D rotational is V- f = [0, f, =0, f] =
R_= (Vf).

The outline of the paper is as follows. In Sect.2, we perform the numerical analysis of
scheme (1.2) where M, ,, = P, and X, j is the space of P! vector fields in each triangle
with continuity of the normal component at the middle of each edge. Although it is non-
conforming in Hg;y, this space is very close of the classical Raviart-Thomas space RT®.
After elimination of py, we obtain a scheme in uy only, very close from the one obtained
in [11]. More precisely, the source term is of the form (f, ¥p,), where @, is a non standard
modification of the test function vj,. This scheme has been introduced by B. Courbet in
[9]. The second scheme is based onto the non-conforming piecewise quadratic Py, ; space
of Fortin and Soulie [15] for up. Our scheme allows to give a natural interpretation both
of the method in [15] and of its mixed interpretation given in [14]. The third scheme is
the natural extension to the quadratic case of the affine version of the FVbox scheme
[10, 11]. Again it is based onto the P72, , space and onto the Raviart-Thomas space RT"
for the flux [23]. Optimal order estimates are derived in each case. To each of these three
schemes, corresponds a dual scheme obtained by inverting trial and test functions. These
dual schemes are non standard and are not further studied in this paper. However, they
have their own interest.

Although we limit ourselves to the academic Poisson problem in order to preserve
clarity, these schemes can handle clearly more complex closure laws for the flux p or
Neumann boundary conditions.
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IIl. THE CASE Pl o X [(Phe) X (Php)]

A. Discrete equations

The first scheme we study is based on [9], where the degrees of freedom of u;, and p;, and
the discrete equations are introduced. Here, we perform the numerical analysis of the
scheme in the framework of a mixed Petrov-Galerkin method. The trial space for uy, is

P,.o = M p, (non-conforming homogeneous space of Crouzeix-Raviart [12]) defined by

Péao = {vn /Y K €T, vpk € P'(K),vp is continuous at the middle
of each edge, v, =0 at the middle of each edge on 01}

The local degrees of freedom of P, are the linear forms < I, ; upjx >= up (zc) and
the local basis is

Pi,(x) =1—2Ag(x) (2.1)
The decomposition of uy |k in this basis is
unx(@) = Y uK.epK.e(x) (2.2)
ecOK

The global degrees of freedom are the forms < [, ; up >= up (z,) a € A;. The global
basis of the Crouzeix-Raviart space Py, is

pa(iL“) = PKi,e1 (l’) I]-I_(l (l’) + PKs,ez ]]-Ig (ZL“) (23)

2

We take K7 and K> in order to have Paja = 1. The edge a is oriented from K; toward
K,, with a = e; in K} and a = e in K,. The global decomposition of uy, is
uh(m) = Z Uq pa(l’) (24)
a€A;

with u, = UK, e, = UK,,e,- The space Xy p is

Xin = {pn: Q> B /pyic € PUK)? VK, py-v, (2.5)
continuous at the middle of each edge a € Ai} (2.6)
The local degrees of freedom of X, ;, are
< Lke; pog >= /ph VK ; < Mke; prg >= /ph CTK,e (2.7)
e e

The corresponding local basis is Bx = {PK6 (@), Qk,e(x), e € 6K} where the affine

vectorial functions Pg ., Qe are

Peo(@ =" Quate) = e

TK,e (28)
Pk may be written in the form

Phik (33) = Z [UK,e Pk . (-T) + WK e QK,e (-T)] (2-9)
ecOK
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with v e =< Lk ; Paix > , Wk,e =< Mk ; ppx >- The global degrees of freedom
of X p, are the linear forms defined for a € A, K € Ty, e € 0K

< Lg;pp >= / PhVa < Mg ; pn >=< Mg e ; prjx > (2.10)
a

The corresponding global basis is B = {P,(z), Qr.(zr),a € A, K € T, e € 0K} with
P, (z) = ﬁpa (z) 4. The global decomposition of py, € X1 p is

pr(@) =Y vaPu(@)+ Y Y wkeQk.e(x) (2.11)
acA K ecdK
where v, =< Lg; pp >. In addition v = vk, e, = —UKs,e,- Let us describe now the
discrete system (1.2). Equation (1.2), is equivalent to the NE equations
Y vke=—|K[(I° fx (2.12)
ecOK

where II° is the orthogonal projector onto the space P° of the constant functions in each
triangle. Equation (1.2), yields the 2N E equations

o:/ (pn —Vup) , VK €T (2.13)
K
or equivalently
K] [ 1 1 ] lel
1 - _ = — 2.14
2 [ e e = o e gy (1

If we impose the homogeneous Dirichlet boundary conditions by
U, =0 Vae Ay (2.15)

then we have 3NE + N A, equations. On the other side the total number of unknows
is 2NA+ 3NE. Since 3NE + NA, = 2N A, we have to find 3N E additional equations.
The choice suggested in [9] is to enforce locally the equations p, — V up, = 0 along each
edge e of each triangle K by :

/(ph—vuh)-TK76:0 VKEE,V@E&K (2.16)

e
or equivalently
Wk,e =2 (UK, — UK e) (2.17)

This is equivalent to write the 3N E orthogonality relations
/ (P —Vup)-Qk,e =0 VK € Th,e€ 0K (2.18)
K

This suggests to select the following test spaces X» j, and M, p, in (1.2)
o Xop=(P"? +Vect{Qke, K€ Th,e€ 0K}

o My,=P°

The dimensions of X, 5 and My j are

dim X, , =5NE dim My, = NE (2.19)
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Therefore, due to (1.8), the following necessary relation holds
dimXLh —l—dimMLh = dimX27h +dimM27h (220)

Note that X5 5 is nothing but the space
Xop = {qh QR /gy € PH(K)?, div gy =0 VK € n} (2.21)

This results from the fact that for any K € Tp,, e € 0K, |K|div Qk,e = Vk,e *Tk,e =0
and from a dimensional comparison. Finally, the discrete system can be settled as: find
(n, pn) € My p X X1, such that

Z(dinh + f,uon)o,x =0 Yo, € M

& (2.22)
Z(Ph — Vun,gr)oxk =0 Vg, € Xop
K

or equivalently, for each K € Tj

Z UK, = —| K] (Hof)K N E equations

e€cOK
1
3 Z [UK’e VK,e YK, TK7e] = Z UK,e % VK.e 2 N E equations (2.23)
ceon - Il el ceow Kl
Wre =2 (UK, — UK ) 3 NE equations

with the boundary conditions u, = 0 for a € Ay.
Let us briefly describe now the matrix form of (2.23), (cf also [10]). Introducing the
notation

uK,el UK,el wK761
UK = UK, eq H VK = UK, es ) WK = WK ,eq (2.24)
UK, e3 UK,e3 WK,e3

(2.23) may be written as

{ —Lgy Uk + Mg, Vk + My Wi = —Ng (2.25)
Wk =LgUk
with IJZ'ZI/K’ei,Ti:TK,ei;i:]-72737
e U T L, e
LK,lzm lel| v lea|vs |es| vy ; MK,lzm Tl VT Tea] V2 en) V3
lei| i lea|vs leslvd ] %Vf %V%’ %Vﬁ"
0 0 0
To= 5o | 7l ]
SR | G T
LTl ™0 Teal 72 Tes| 78
. (I f) e i 0 1 -1
Ny, = 0 i Lgo=2|-1 0 1
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Equation (2.25), gives Vi in function of Ux by
Vk = =Nk + Lx1 Uk (2.26)
with
N =Mk Ny 3 Lica = Mk [Lica = Mo Lico| U (2.27)

System (2.23) results now in a system in the (#,)qea; unknowns by eliminating v, for
any internal edge a € A;, with orientation from K; towards K5, a = e; in K1, a = e3 in
K> by vk, e, + VK, e, = 0. This yields a linear system AU = b, U = (ug)qcA,, Which is

[LK,l UK1]61 + [LK,2 UKz]ez = [NK1]61 + [NKz]ez (2'28)

Once (2.28) is solved, py |k is evaluated by (2.9) where Vi and Wy are given by (2.26),
(2.25). Note finally that (2.9) is nothing but the local following Helmoltz decomposition

phik (@) = Vi + V5 (2.29)
where
|K| K wi,
- 7 Z 5 P (@) 5 ¢ (@) = —% > Pk (@) (2.30)
€OK e e€OK |e|

B. Numerical analysis

Lemma 2.1. Discrete system (2.23) has an unique solution.

Proof. Since dim X j + dim M; ;, = dim Xs ; + dim My p, it is sufficient to prove
that (II°f)x = 0 for any K ensures up = 0, pp, = 0. From (div pp, , vp)o,x = 0 for any
vp, € PP, we infer by (2.21) that p;, € X». Taking g, = pn — Vuy, in (2.22), we deduce
that p, = Vuy,. In particular py is constant in each triangle K. We have now

> n, Vun)ox = —Z (div pr, un)oc + Z/Ph VK.e)

K K ecdK

Z[ Z (ph-yK,e)/(uh—uKe Z UKe/ph yKe

K ecoK € e€COK

1
Since ug, = ﬂ /uh and
e

ZZUKe/ph VK,e =
a

K ecoK

Ua[/ (ph\Kl *Va — Ph|K» 'Va)]
a
we deduce by midpoint continuity of py - v, on each interior edge a,

0= Z(Ph;vuh)O,K = Z |ph|(2),K = Z |Vuh|g71{

K K K

€A;

Therefore p, = Vu, = 0 and then uy, = 0.

In order to obtain well-posedness of discrete problem (2.22), let us explicitely perform
the elimination of p;, in order to write the scheme in the following form
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- a discrete system in uy only.
- a local reconstruction formula of pp in function of uy,.

Proposition 2.2. The FVbox scheme (2.22) is equivalent to the following scheme :
(i) up € Pﬁc,o is the solution of the modified non-conforming method

Z (Vup, Vvh)mK = Z(f; Hovh + Vo, - AK)07K Yo, € P?%C,O (2.31)
K K
where Ak is the vector depending only of the geometry of K, given by

Z (e’ =€) le] k. (2.32)
62 e€8K

(ii) The piecewise affine function py is given in function of Vuy and I°f by the local
representation formula of py in function of V uy and II°f is

Ak =

prik (€) = Vupx + Vpr ik Ix it (2.33)
where
Vphk =— Z le|? ve ® ve (2.34)
E |€ ecOK
ecoK

(iii) The corresponding local decomposition (2.9) of py|k is

prik (@) = Y [vke Prce () + Wi e Qe ()] (2.35)
ecOK
with
Ou e|?| K| (II° Ou
Ve = €] 5 — ~ KK ;ng , Wie = le] 5 (2.36)
Ovice > ecor €l 0Tk e

Proof. Let us first prove (ii7) . Taking the average of px . (z) over K, we get since,

[0 =15

Ph =
),

For each e € 0K, the decomposition of V uy |k in (Vi , Tk ) is

1
el [VK.,e Vi,e + WE e Tie] = V Up k0 (2.37)
e€8K

ou ou
vU'h|K = ﬁ VK,e + # TK e (238)

Therefore we have still

1 Ouy, Oup,
\Vi S E + 2.39
uh‘K 3 5 [ay e VK7€ 87— P TK,e] ( )

Identifying (2.37) and (2.39) and taking in account wg . = |e| ;uh we obtain

TK,e

1 ou
> ek = 3 o, (2.40)

ov
cCOK ccor = Ke
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From the identity Z le| vi,e = 0, we deduce that there exists a constant Cx such that
eCOK

UK,e _ 1 8uh

= = — C 2.41
o = el duie, T OF (241)

Finally, since Z v, = —|K|(I°f)k, Ck is given by
e€OK

Ck =————— (I°f)k (2.42)

and (2.36) follows from (2.41).
We prove now (ii). Starting from (2.35), we have (cf (2.1) for the definition of px )

o(z
puk (T) = pK|7|() |:'UK76VK,e + Wk,e TK,e] (2.43)
e€OK €
0 0
with vk e, Wi, given by (2.36). Since Vuy = Un VK. t+ ] TK e We get
’ ’ 81/K e ’ aTK7e ’

K| (I1°f)
Phi (@) = Vup i _ KAk 5 Z Pr.e(T) le| vk e (2.44)
Seec 25,

In each triangle K we may write the affine function px . () as

e
PK.e(r) = 3 + % (VK. - T ) (2.45)
Substituting (2.45) into (2.44) yields
n°f
th(ac):VuhK—(Z EE Z le|? (ke - H)I/Ke (2.46)
ecOK
Thus, the gradient of py x is
V phix = — e : Z le|* vice ® Ve (2.47)
2e | | ceok

wich concludes (%i).

Finally, we prove (i). Suppose given vy (z) = > Vo Pa () a function in P, . The

a€A;

restriction of vy, to any triangle K is vy |k () = ). vk, Pk, (x). We have the identity
e€OK

0= 3 [oulp-nl==3 3 [ vice o) (2.48)
a€A; K ecdK

For any z € e, we have vk e = VK e PK.e (€) = Up (T) — VK e DKot (T) — VK e PE et (T).
Replacing vg . by this value in (2.48), we get

Z Z /'Uh DPh VK, +Z Z /er PK.e (T) + VK.er DK, ()] (Ph - VEc,e)

K ecOK K e€OK

v

(1) (1)
(2.49)
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Replacing pp(z) by its value (2.33) and taking in account /pK,er = /pK,ew = 0 the

e €
second term is

In=> > /UKe P () [V eV Pk - TR E] + 0k e Picer (@) [Vice -V Pojic - Ti ]
K ecdK
(2.50)
Since prer , Pi,er are affine on e and pi e (Me) = px,e (Me) = 0, Simpson’s quadrature
rule yields

I = Z Z %' {(Ume“ — UK e!) [VK,e -Vpn i l“K—S)']
K eedK

— (VK — UK,er) [VK,e “V Pk m] }

0
The identity vk e — VK er ——M Uh allows to write
2 aTKe
=35 L, - Ve ) 22 (2.51)
s 2o 19 WVKe- Ph|K " TK,e DTk o .

We write now the local decomposition of V pp |k in the basis Bk . of 2 x 2 matrices
BK,e = {VK,e QUKe, VK,e @TK e ), TK,e QVK,e > TK,e @ TK,e}
We have
vk, =—c08 0" vk +sin 0" 1k, 3 vier =—cos 8 vk, —sin 0 Tk, (2.52)

Replacing vk e ® Vi, and vk v ® Vi o by their values in function of the elements of
Bg e, we obtain

II
Vpnk = (Z f| B [{| |2 + € | (cos 0") + |e"| (cos 8") } VK,e @ VK,e
+ {|e’|‘ (sin 6")% + |€"|? (sin 0’)2} TK,e @ TK,e
2|K . .
+ {0 P -1 [uKe@TK,EMKﬁ@uK,E]]

The component of Vph‘K onto Vi,e @ Tk e 1S
2|K|(I°f)k

> e (e =€)

VK,e " VDhK “TK,e =

and we deduce from (2.51).

(D= |K|(I°f)x

K

V”"'{GZ e > (e - )|e|TKeH (2.53)

e€OK

Defining for any K the vector Ax by

A 2 " . 2.54
K= GZHZZM ") le] e (2.54)

ecOK
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we obtain

Z |K|(IT°f) i (Vop, - Ag) = Z/Kf(Vvh-AK) (2.55)

K

Summarizing (I) and (II) we deduce

OZ—ZZ/vh Ph - VKe +Z|K|H0 Vvh AK)
K ecoK
= => (on, Von)ox — Y (div pn, va)ox + Z |K|(°f) e (Vor - Ak)
K K
= =Y (Vup, Vo) OK+Z (11° vp) OK+Z [ Vun - Ak)o,x
K

Which is (2.31). Note that the vectors Ax verify an estimate

sup |Ax| < Ch (2.56)
KeTh
Where C is independant of h.

Let us check now the equivalence between the FVbox scheme (2.22) and the scheme
(2.31, 2.35). The scheme (2.22) has an unique solution by Lemma 2.1, which is also so-
lution of scheme (2.31, 2.35). Since this lattest scheme has clearly at most one solution,
it has exactly one solution, which is the solution of (2.22). -

Note that it results from (2.31) that the global linear system in the unknowns (ug4)qc4;
is in fact symmetric definite positive. In order to deduce from the preceding results the
well-posedness of discrete problem (2.22), we need the following discrete counterpart of
the Poincaré inequality in the space H, —|—P&c’0, [16]. Let us mention that the proof given
in [10] is incomplete, since the inequality is proved there separately for u € Hg, u € Py,
but not for u € Hj + P, ;. Moreover, the hypothesis made in [10] on the mesh is useless.
We give a proof for completeness.

Lemma 2.3. Foru € Hj + P, ,, we have
lulo.o < C'lulyn

where C is a constant depending only of .
Proof. We have

ulog = sup wdlo (2.57)
ger? gz0 |90
For any g € L? (Q), there exists p € H'(Q)? such that
divp=g , [plle <CQ)lgloe (2.58)

(u, 9)o,0 = (div p,u)o,0 = — ; (Vu,ploa +;/8K(p ' VK)'lj (2.59)

'

(1) (1)
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A classical calculation [6] yields

(mz—z/mmm+2 (P va) u

acA; @ a€A, ¢

= -3 [ev-TRu+ Y [en-rr
a€A; @ a€Ayp @

= ZZ (p'VK7e_p'VK7e)u
K ecdK "€

which gives by Lemma 3 of [12] the estimate

(DI <Y Chllphx lulx) < Chlplig lulis
K

where C' is independant of h. Finally
[(w, 9)o.al < |plo |ulin +Chiplialulin < C Q) (Ch+1) |gloalulin

and the result follows by dividing by |g|o,o on each side. -

Proposition 2.4. The unique solution (up, , pp) € M1 X X1 n of problem (2.22) veri-
fies
lanllin + Ipnlln < Clfloo (2.61)

Proof. Taking vy, = up, in (2.31) and using the fact that the vectors Ag are in O(h),
we deduce

lunlin = D (f, (M un) + Vun - Ax)o ke (2.62)
K
< |floe (lunlo,o + C h|up|in) (2.63)

Using Lemma 2.3, we obtain, ||up|l1,n < C|flo,o. From the local representation formula
(2.46) for pp, , we deduce

Iprlo, < lunlin +Ch|flog < C'floq (2.64)
In addition, |pp|1,n < C|flo,q results from (2.34) -
Recall that well-posedness of discrete problem (2.22) is equivalent to the two following

conditions (%), (%) [3, 5, 7, 22, 11], applied to the bilinear form Bj, defined on (M 5 X
X1,n) X (Mo, x Xa 1) by

By [(un, pn) 5 (v, an)l = (0w an)o.o + Y (div pr, va)o.x — Y (an, Vun)ox (2.65)
K K

(i) 3a > 0 such that

sup  Bp[(un, pn); (vn, qn)] > all(un, pe)llie Y(un,pr) € Myp X X1 p
llan vnll2,n <1

(ii) For any (vp , gn) € Mo X Xop
V(Uh;ph) € Ml,h XXLh ) Bh [(uhaph); (vha qh)] =0= (vha qh) = (070)
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In addition, well-posedness of scheme (2.22) is equivalent to the one of the dual scheme:
find (vi, qn) € Map x Xop, such that for any (up, pr) € M1 p % X1 p

By [(un, pn) 5 (vn, qn)] = =(f, un) (2.68)
The latter scheme can be rewritten as, [11]:
find (vp,, qn) € P° x [(PO)2 + Vect{Qk,e, K € Th,e € OK}| such that

- Z(V Un, qn)o,k = —(f,un)o, Vuy, € Pr%c,O
- (2.69)

(pn > an)o,o + (divpr,vp)oe =0 Vp, € (P),)?

The standard error estimates for the two schemes are

Proposition 2.5.
(i) The solution (up , pp) of scheme (2.22) verifies the error estimate

lu = unllrn +llp = prllin < Chllulz.o + [uls el (2.70)
(ii) The solution (vy , qn) of scheme (2.69) verifies the error estimate
|u —vilo,o + [P — quloo < Chlulza (2.71)

Proof. The proof follows the same lines than the one in [11]. We have

lu = wnllin +lp=pallin < €4 inf [ anllun + o = Bl
(@h ,Pr)EM1 X X1 1

B ) ; v ) q + ) v
. sup | B [(u,p) Evh flh)] (f 5 Tn)o,el }
(17h,lih)€M2,h XXQV}L ||(Uh ’ qh)”HZ.h

It is straightfoward to check, that, as in [11], the consistancy error vanishes. Therefore,
(i) results simply from the two standard interpolation estimates in spaces My p, X1 p

inf u—1u < Chlul inf — P < C hlpl: 2.72
it lu—dnln S Chluba o f Ip—pulis <Chipha (272

For (ii) we have

|u —vrloo + P —qrloe < C{ ___inf lu —Onlo,0 + |p— q~h|0,Q]
(Oh,qn)EM2 n X X2 1
+ sup |Br [(@n ﬁh)j (7?19)] + (f, @n)o,ql }
(ﬁ/}“ﬁh)eMl'},_ ><X1,h ||(U’h Y ph)”Hl.h

The consistancy error is written as

By [(@n, pn) 5 (w,p)]+ (f @)oo = Br, oo+ Y (div in, wox — Y (Vin, pox + (f, n)os
K K

;/BK(ﬁh'VK)U—;/aK(p'VK)ﬂh

D (In)

A classical argument gives :

(D] < Chlprlinlfloe 5 (I < Ch|flogqlinl,n (2.73)
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The result follows from the two standard interpolation estimates
inf |u—10 <Chlu ; inf el <Ch 2.74
ot lu = Tnlo < Chlulie snf P —dnloo < Chlplio (2.74)

|
Another possibility to derive error estimate (2.70) is to use the reduced scheme (2.31)

in up. We can prove that
v = upllin < Chlulrg.

Error estimate (2.70) for py, is derived in a second step from the representation formula
(2.33).

Finally, we have the following second order error estimate in the L? norm whose proof
follows the same lines than the one in [11].

Proposition 2.6.  The solution uy € Py, verifies

u— uh|079 < C h? (|U,|279 + |U,|379) (2.75)

Ill. THE CASE (BDM" + V+BEC) x P,

A. Discrete equations

In this section, we describe another FVbox scheme still having form (1.2). This scheme
is closely connected to the non-conforming piecewise quadratic method of Fortin and
Soulie [15], and to its interpretation as a mixed method given by Farhloul and Fortin in
[14]. In fact, we prove that our scheme is nothing but the hybridization of this method.
Let us firstly recall the two spaces usefull in the sequel. The first space is the space
M, = P}, of scalar quadratic functions continuous at the two Gaussian nodes on each
interface a € A;, vanishing at the Gaussian nodes of each boundary edge a € A;,. An
important feature of this space is that the values of ujx € P2, at the six gaussian
points on 0K are not an unisolvant set of linear forms. Indeed, there is a non-trivial
function vanishing at these six points, which is the non-conforming quadratic bubble
function given by

M=2-3(\ 4+ )+ A\2) (3.1)
It is proved in [15] that M;p = MLh @ Mlyh where Mlyh is the quadratic conforming

space Pc2,0 with homogeneous boundary Dirichlet conditions and Ml,h is the space Ml,h =
{wn 5wy, =ag by, ax € R VK € Ty} . Thus, the dimension of M, p, is

dim M, = dim M, 5 + dim M, , = NA; + NP, + NE (3.2)

Thanks to the Euler relation NE—NA+ NP =1, we deduce that dim M; j,, = 2NA;+1.
In addition, keeping notation (1.4) for the norms onto the space H} + Mj p, we have
the following result, whose proof is analogous to the one of Lemma 2.3

Lemma 3.1. The semi-norm | |15 is a norm on My p, equivalent to ||ull1,p

For the space associated with the flux pjs, we use the space introduced in [14], X1 5 =
Xip + XLh where X, = BDM?! is the space of Brezzi-Douglas-Marini [8] of lowest
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order defined by
BDM" = {py € Haw () ; pn € (P (K))* VK €T} (3.3)
and X, j, is defined by
Xin={px =axV* b, ak €R VK €Ty} (3.4)

The space X, N X1 reduces to the one dimensional space generated by the function

Z V+b%. Consequently, we have dim X1, =2NA+ NE — 1. Recall, [14], that X 5
KeTh

coincides with the space of vectorial functions pj, affine in each K € 7T, and verifying
the two weakened div-conformity properties:

(i) [, (Pnk, Ve Ky + Phiks  Vek,) =0 forany e = 0K, NOK,
(4i) For any internal vertex M, Y. [5, (pr - v)¢ar =0 where ¢y (3.5)
is the standard P!-Lagrange function corresponding to M.

We have now to define the test spaces My p, Xa 5 as discontinuous Galerkin spaces. In
order to keep the relation

dim My 5, + dim Xy , = dim M, j, + dim X, , = TNE (3.6)

we take My = {vn € L*(Q) ; vyx € PY(K) VK € Tp} (dim M, = NE) and
Xon ={an € (L*()*; qnk € (P'(K))* VK €Ty} (dim X5, = 6NE). The discrete
system has still form (1.2): find (py , up) € X1, x My p, such that

Z (divph + f, 'Uh)O,K =0 Vv, € M27h

KT (3.7)
Z (P — Vun,qn)oxk =0 Vg € Xop

KeT,

The following proposition states that this method is nothing but the scheme of Fortin
and Soulie [15]

Proposition 3.2. Problem (3.7) has an unique solution (up, , pr) € M1 p X X1 5 given

by

(i) up, € My p, is the solution of the standard variational problem:
Z(Vuh, th)mK = (HO f, 'wh)o@ V’LUh S Ml,h (3.8)
K

(ii) pn, is given by
P = Vupk (3.9)

Proof. We prove that (un,pn) € My p x X1 is solution of (3.7) if and only if it is
solution of (3.8), (3.9). Suppose given (uy,pp) € My p x X1, a solution of (3.7). Clearly,
we have p, = Vuy, (take in (3.7)y g = pn — Vup). Let wy, € My p, Green’s formula
yields

Z(V up , V’LUh)O’K = — Z/ div ppwp + Z/ (ph - I/K) Wh (3.10)
K K K K OK
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Let us write pp, = p1,p + p2,p, Withpy , € Xl,h: P2,h = Z OJKVJ'anC. Since Xl,h C Haiy,

KeTs
the second term in the right-hand side of (3.10) may be rewritten

;/M((ph'VK)wh = Z[/BK(pLh'VK)wh +aK/ (VLbT[L{c'VK)'wh]

% 0K
= Z/plh Va) wh_Z/plh Vo) [wh]
a€Ayp a€A;
an
+ aK W
Z o 0Tk

For any wy, € P%*(K), we have faK 8 "~ wydo = 0. Therefore, the third term van-

ishes. In addition, since [wp] (resp. wh) vamshes at Gauss nodes of each internal (resp.
boundary) edge, the second and first term vanish and (3.8) results from (3.7),. Conse-
quently, any (up,pp) € M1 p X X1 solution of problem (3.7) is solution of problem (3.8,
3.9), which admits an unique solution in M; , x (P}, )? where (P}, )? is the Galerkin-
discontinuous space of affine functions py, in each triangle. This gives uniqueness of the
solution of (3.7). The existence follows from (3.6) and the linearity of (3.7). In particular,
we have proved that the function Vuy g is in fact in Xy p. -

Proposition 3.3. The following error estimates hold

lu = wnllin < C B (Julsg + 1Aulig) 5 Ju—unloe < Ch(julso + [Aulig) (3.11)
Ip = prloe < Ch*|Aufoe ;5 |Ip—prlnaiv < ChlAulig (3.12)
Proof. Results from [15] and from p, = Vuy,. -

B. Comparaison with the mixed method of Farhloul and Fortin

In [14], addressing the paper by Hiptmair [18], Farhloul and Fortin have introduced the
following mixed method: find (u},p},) € Map x X1 such that

Z (le p;l + f, ’Uh)gJ( =0 Yoy, € M2,h

KET. ‘ , (3.13)
Z {hs an)o,x + (div gn, up)o,x} =0 Van € Xup

KeTh
This problem has an unique solution (u}, pj) € My x Xy satisfying |Ju}|li,n +

1P, ldiv,z |l < Clflo,o. The hybrid form of (3.13) is: find (ps , un, An) € Xop X Mo p X Ay
such that for any (qn, v, un) € Xop X Map X Ap

( Z {(ph, an)o, K +/K(div qn) un d.r—/

KeT oK

Z / div pp)vn + (f, vn)oa =0 (3.14)

KeTy

Z (Ph-vi) pn =0

\ KeTn oK

(qn - VK)AhdU}: 0
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The space Ay, of Lagrange multipliers is defined by A = Ay, ® A j with

i ={un € L*(Tn) . € P(e) VeeTy, uy, =0 Veel}}  (3.15)

Non = {pn =4I, 5 ¥ € COQ), Yk € P(K), VK €Ty, ¥l =0} (3.16)

I';, denotes the set of edges of the element of 7, , 'Y = {e € T ; e C 00}, T =T, \I'Y.
Let us recall that uy € P,%QQ writes up, = uj, + up® where uj € on , up® € MLh denote
respectively the conforming and non-conforming part of uy, .

The link between the box scheme (3.7) and the hybrid formulation (3.14) of the mixed
method (3.13) is given by the

Proposition 3.4. Let (up, pn) € M1 x X1 be the solution of problem (Py), let
A € Ap = A1y ® Aoy be defined by A\, = \ip + Aoy where A}, € Ay p, is defined for
a=1[5,5"€A; by

() A, = 205 (@) - (g (5) +uf, (S)]  Vae A,

where uj, denotes the conforming part of up.
(i1) A} € Asy is the affine continuous function defined by the values of u§ at the vertices
of the mesh. Then
(@) (pn, %uy) is the solution of mized scheme (3.13).
(b)  (pn, OOup, Ap) is the solution of (3.14).

Proof. (a) Let (up, pn) € My x X1, be the solution of the FVbox scheme (3.7).
Since (3.7), and (3.13), are identical, we just have to check that (pj , II° u) is solution
of equation (3.13),. For g in X p, since div g, € P° , we have

(pn, qn) = Z (Vun, qn)ox = — Z (I%up , div gn)o,x + Z / up (qn - VK )
KeT KeT KeT, V9K

(3.17)
It results from the proof of Prop. 3.2, that the second sum in (3.17) vanishes, which
gives (3.13).
(b) By unicity of the solution of (3.14), it is sufficient to check that (II°up, ps, An) defined
in Prop 3.4 is solution of (3.14). For ¢, € X» p, we have still (3.17).
Defining A = (A1, A2) € A1 p X Aoy, by (i), (4), we deduce easily from Simpson’s quadra-
ture formula, that for any e € 0K,

/e (an - v, = / (an - vic)N (3.18)

Therefore, (IT°up, pr, An) € Ma,p X X2 5 X Ap is solution of (3.14). -

IV. THE CASE (RT* + VXBR®) x P3.,

A. Discrete equations

In this third scheme, we introduce a new space for the approximation of the vectorial
unknow pp, which is X, = RT' + X; , where RT" is the standard Raviart-Thomas
space of order 1 (see [23]) defined by

RT! = {ph € Ha(9) 5 prx € RTy (K) VK € Th} (4.1)
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where for each K € Ty, RT' (K) = P, (K)?+P; (K) [ il ] . The space X j, is introduced
2

in Sect. TILA. Again, dim RT' X1, = 1and RT'N X1 = Veet ( Y Vb ) . Using
KeTh

dim RT'(K) = 8, and (1.8), we deduce dim X7 ;, = 3NE + 2N A — 1. In addition, using
the same method than in [15], we check that X; 5 has the following characterization:
pr € X5, if and only if py x € RT!(K) and py, verifies the two weakened div-conformity
conditions (3.5). We still use My, = P?,, for the scalar unknow u, whose dimension is
2N A; + 1. Consequently, dim Xy p, + dim My, = 3NE + 2(NA + NA;) = 9NE. This
suggests to take for the test functions the following Galerkin discontinuous spaces

Xon = {an € (L@ 5 quy € (AUK)?, VK ETh) ,dimXop=6NE  (42)

My = {vh € L2(Q) ; vyk € P(K) VK € Th} , dim M, =3NE  (4.3)
We have dim X5 5, + dim Ms , = 9NE. The FVbox scheme reads still: find (up , pp) €
M p x Xy such that

Z (divph + f, Uh)O,K =0 Vo, € M27h

KeT (4.4)
Z (pn — Vun,qn)oxk =0 Van € Xop

KeT,

Proposition 4.1. Problem (4.4) has an unique solution (up, , pp) in My p X X14, given

by

(i) up € My p, is solution of
Z(V un, Vwp)ox = (I f), wp)o,o  Ywn € Mip (4.5)
K

where I1' is the orthogonal projector onto the affine functions in each triangle K.
(i) pp, is locally given by

puixc = Vunyie — 3 { (0 ) 7 = (11 1) 73} (16)

Proof. Problem (4.4) is linear in (up,pp) and the number of unknowns is equal to
the number of equations. Therefore we just have to prove unicity of the solution of (4.4)
which is given by unicity of problem(4.5-4.6) .

(i) Suppose (up, , pn) € My, % X1 satisfies (4.4). For any wy, € chﬁ, one has Vwy €
Xa.p . Therefore, by (4.4), and Green’s formula

Z (Vun, Vwn)o,x = — Z (div pn , wh)o,x + Z/ (pn - vK) wh (4.7)
K K K 70K

The decomposition of ppx € X1 = RT' + V0" writes pyic = Prjx + ax V0.
6bnc

Therefore, the second part of the r.h.s. of (4.7) is Z/ (P - vi) wp, + Z aK/ K
K JOK K ok OTK

As in the proof of Prop. 3.2, we deduce

Z (V up , V’LUh)oyK = — Z (divph 5 wh)O,K (48)
K K

Wk -
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Since M j, is the Galerkin discontinuous P space, we deduce from (4.4), that div py x =
—II' f, which gives (4.5).

(ii) Consider now pp|x = Ppjkx + ar V. The local expression of Phik € RTY(K) is
Prik = Pujx + [AK M] Tk #, where P, € PH(K)? and Ay is a constant vector in K.
The divergence of p, reduces to

div pp, = div Py, + 3 (Ax - Tx &) (4.9)

Since divp, = —II'f, A = —% V (It f).

In addition, we have (II' f) g = (II° f) g +V (II* f) - T &, thus, the quadratic part of pr |k
is (A -Tx £)Tx & = —%[(Hlf—ﬂof)M]. The remaining part py x = ﬁh‘K+aKVLb”KC
is linear and is determined, by (4.4),

> (Bn = Vun, qn)o,x = % > ((Hlf - Hof)m,%)o . V€ (PH(K))* (4.10)
K K ’

which gives (4.6).
We have proved existence and unicity of problem (4.4) and its equivalence with problem
(4.5-4.6).

B. Numerical analysis

We deduce from the results of the preceding section

Proposition 4.2. Ifu € H*(1),
(i) |u—uplin < CR*(|uls0 + |Aulz,0)
(Zl) |U, — uh|07h < Ch3(|u|379 + |Au|279)
(i) ||p — prllaiv.e < Ch*|Aulzq

Proof. The proof of (i) uses the method of proof of, e.g. [6] applied to (4.5). One
has only to use the property of P,%QQ to satisfy Iron’s Patch test and to apply Lemma 3
of [12]. (ii) is proved by an Aubin-Nitsche argument as in [6]. Finally, (iii) results easily
from the representation formula (4.6). -
Implementing method (4.4) is quite easy using (4.5), (4.6) and following the indications
given in [15] for the implementation of the non-conforming piecewise quadratic element
on triangles.
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