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In this paper, we introdue three shemes for the Poisson problem in 2D on triangular meshes,

generalizing the FVbox sheme introdued in [10℄. In this kind of sheme, the approximation

is performed on the mixed form of the problem, but ontrary to the standard mixed method,

with a pair of trial spaes di�erent from the pair of test spaes. The latter is made of Galerkin-

disontinuous spaes on an unique mesh. The �rst sheme uses as trial spaes the P

1

nonon-

forming spae of Crouzeix-Raviart both for u and for the ux p = ru. In the two others the

quadrati nononforming spae of Fortin and Soulie is used. An important feature of all these

shemes is that they are equivalent to a �rst sheme in u only and an expliit representation

formula for the ux p = ru. The numerial analysis of the shemes is performed using this

property.
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I. INTRODUCTION

The aim of this paper is to introdue three box shemes for ellipti problems, based on

the model of [10, 11℄. This lass of shemes belongs to the ategory of so alled mixed

Petrov-Galerkin methods. This means that a mixed form of the problem is disretized

with trial funtions di�erent from the test funtions. The interest of these shemes is

that they ombine the advantages of the �nite volumes and of the �nite element mixed

methods within a simple framework. Their main features are:

- the two equations of the mixed form are disretised at the level of the same mesh, by

simply averaging (Finite Volume Methods). One speaks of \ompat shemes".

- standard mixed �nite elements for trial spaes are used. The test funtions are of

Galerkin-disontinuous type.

- these shemes an be seen as a natural generalisation of Keller's box sheme [19℄ (in-

terfae degrees of freedom for u and ru).

In the sequel, we onsider a bounded domain 
 � R

2

with regular or onvex boundary

in order for the homogeneous Poisson problem to be well-posed in H

1

0

(
)\H

2

(
) with

data in L

2

(
). The mixed form we onsider is: �nd (u; p) 2M

1

�X

1

suh that

�

(div p+ f; v)

0;


= 0 8v 2M

2

(p�ru; q)

0;


= 0 8q 2 X

2

(1.1)
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The standard setting holds with M

1

� X

1

= H

1

0

� H

div

(or H

1

0

� (H

1

)

2

in Set. 2)

and M

2

� X

2

= L

2

� (L

2

)

2

: Reall that the divergene onforming spae is H

div

(
) =

fp 2 (L

2

(
))

2

= div p 2 L

2

(
)g. We denote j � j

m;


; k k

m;


the m-semi norm and

the m norm on H

m

(
). In addition, we note kpk

div;


= (jpj

2

0;


+ j div pj

2

0;


)

1=2

and

jpj

div;


= j div pj

0;


: The approximation of (1.1) on a regular mesh T

h

made of triangles

K is performed by the sheme

8

>

>

<

>

>

:

X

K2T

h

(div p

h

+ f; v

h

)

0;K

= 0 8v

h

2M

2;h

X

K2T

h

(p

h

�ru

h

; q

h

)

0;K

= 0 8q

h

2 X

2;h

(1.2)

In [10, 11℄, the sheme (1.2) is addressed with the disrete spaes (M

1;h

; X

1;h

) =

(P

1

n;0

; RT

0

) (P

1

nononforming spae of Crouzeix-Raviart and divergene onforming

spae of Raviart-Thomas of lowest order). Note that this sheme has also been ad-

dressed in [21℄ , and that it oinides with an hybrid form of the standard mixed method

of Raviart-Thomas ([2, 20℄).

In this paper, we are going to desribe shemes of type (1.2) with disrete spaes

M

1;h

; X

1;h

eah of one being non-onforming in H

1

0

; H

div

. The interest of this lass

of shemes is that they use trial spaes of higher order than the standard Galerkin

mixed methods, due to the fat the the Babu�ska-Brezzi ondition takes plae between

M

1;h

�X

1;h

and M

2;h

�X

2;h

and not between M

1;h

and X

1;h

: In addition, ontrary to

many other shemes ombining the mixed �nite element and the �nite volume formalism

[4, 17, 22, 25℄, only one mesh is used. The prie to pay for that advantage is the diÆulty

to �nd spaes M

1;h

�X

1;h

and M

2;h

�X

2;h

oupled by a stability ondition. A minimal

request with this respet is of ourse that dim M

1;h

+dim X

1;h

= dim M

2;h

+dim X

2;h

:

The numerial analysis of (1.2) an be performed in two ways. The �rst one is proving

the Babu�ska-Brezzi stability onditions [3, 7, 22, 5℄ for the underlying bilinear form B

h

on (M

1;h

�X

1;h

)� (M

2;h

�X

2;h

) de�ned by

B

h

[(u

h

; p

h

) ; (v

h

; q

h

)℄ = (p

h

; q

h

)

0;


�

X

K

(ru

h

; q

h

)

0;K

+

X

K

(div p

h

; v

h

)

0;K

(1.3)

The other possibility we follow throughout this paper, is to express the ux p

h

in funtion

of u

h

and f by a purely loal formula. Therefore, our shemes are equivalent to a non-

onforming sheme in u

h

and a loal reonstrution formula of p

h

in funtion of u

h

.

Note that the non-onforming methods have been introdued in works suh as [12℄, [24℄.

They have reently gained a renewal of interest ([18℄, [13℄) espeially as a posteriori

interpretations of mixed hybridized methods. That topis is systematially explored in

[1℄, where a broad number of standard mixed methods is proved to be equivalent to a

non-onforming method in the prinipal unknow and a loal reonstrution of the ux.

However, the situation is muh more simpler in our shemes sine no hybridization is

required to get this equivalene.

Let us give now some standard notations. We introdue the mesh dependent spaes

(H

1

0

+M

1;h

); (H

div

+X

1;h

); equipped with the mesh dependent norms

juj

1;h

=

�

X

K

jruj

2

0;K

�

1=2

; kuk

1;h

= (juj

2

0;


+ juj

2

1;h

)

1=2

; u 2 H

1

0

+M

1;h

(1.4)
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jpj

div;h

=

�

X

K

j div pj

2

0;K

�

1=2

; kpk

div;h

= (jpj

2

0;


+ jpj

2

div;h

)

1=2

; p 2 H

div

+X

1;h

(1.5)

We denote also H

1;h

= (H

1

0

+ M

1;h

) � (H

div

+ X

1;h

); H

2;h

= L

2

� (L

2

)

2

and by

k k

H

1;h

; k k

H

2;h

the norms

k(u; p)k

H

1;h

= (kuk

2

1;h

+ kpk

2

div;h

)

1=2

; k(v; q)k

H

2;h

= (jvj

2

0;


+ jqj

2

0;


)

1=2

(1.6)

B

h

is the bilinear ontinuous form onto H

1;h

�H

2;h

B

h

[(u; p) ; (v; q)℄ = (p; q)

0;


�

X

K

(ru ; q)

0;K

+

X

K

(div p ; v)

0;K

(1.7)

We onsider a regular �nite element triangular mesh T

h

in the usual sense. The geometri-

al notation is as follows. The triangles are denoted byK. We denote by �K = fe; e

0

; e

00

g

the edges of K . The edges e; e

0

; e

00

are opposite to the verties S; S

0

; S

00

and to the angles

�; �

0

; �

00

. The baryentri oordinates orresponding to S; S

0

; S

00

are �

S

; �

S

0

; �

S

00

. The

outgoing unitary normal vetor to e of eah tringle K is �

K;e

, the orresponding tan-

gential vetor is �

K;e

= R

+

�

2

(�

K;e

), where R

+

�

2

is the positive rotation of angle

�

2

. The

baryenter of K is x

K

and the midedge of e is x

e

. We note a 2 A = A

i

[ A

b

the edges

with global numbering. The sets A

i

(resp. A

b

) denote the internal (resp. boundary)

edges. The number of triangles is NE. The number of edges (resp. internal, boundary)

is NA (resp. NA

i

, NA

b

). The number of verties (resp. internal, boundary) is NV

(resp. NV

i

, NV

b

). The Euler relations write

3NE +NA

b

= 2NA (1.8)

NE �NA+NV = 1 (1.9)

The gradient of f is r f = [�

x

f ; �

y

f ℄ and the 2D rotational is r

?

f = [�

y

f ; ��

x

f ℄ =

R

�

�

2

(r f).

The outline of the paper is as follows. In Set.2, we perform the numerial analysis of

sheme (1.2) whereM

1;h

= P

1

n;0

and X

1;h

is the spae of P

1

vetor �elds in eah triangle

with ontinuity of the normal omponent at the middle of eah edge. Although it is non-

onforming in H

div

, this spae is very lose of the lassial Raviart-Thomas spae RT

0

.

After elimination of p

h

, we obtain a sheme in u

h

only, very lose from the one obtained

in [11℄. More preisely, the soure term is of the form (f; ~v

h

), where ~v

h

is a non standard

modi�ation of the test funtion v

h

. This sheme has been introdued by B. Courbet in

[9℄. The seond sheme is based onto the non-onforming pieewise quadrati P

2

n;0

spae

of Fortin and Soulie [15℄ for u

h

. Our sheme allows to give a natural interpretation both

of the method in [15℄ and of its mixed interpretation given in [14℄. The third sheme is

the natural extension to the quadrati ase of the aÆne version of the FVbox sheme

[10, 11℄. Again it is based onto the P

2

n;0

spae and onto the Raviart-Thomas spae RT

1

for the ux [23℄. Optimal order estimates are derived in eah ase. To eah of these three

shemes, orresponds a dual sheme obtained by inverting trial and test funtions. These

dual shemes are non standard and are not further studied in this paper. However, they

have their own interest.

Although we limit ourselves to the aademi Poisson problem in order to preserve

larity, these shemes an handle learly more omplex losure laws for the ux p or

Neumann boundary onditions.
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II. THE CASE P

1

NC;0

� [(P

1

NC

)� (P

1

TD

)℄

A. Disrete equations

The �rst sheme we study is based on [9℄, where the degrees of freedom of u

h

and p

h

and

the disrete equations are introdued. Here, we perform the numerial analysis of the

sheme in the framework of a mixed Petrov-Galerkin method. The trial spae for u

h

is

P

1

n;0

=M

1;h

, (non-onforming homogeneous spae of Crouzeix-Raviart [12℄) de�ned by

P

1

n;0

= fv

h

=8 K 2 T

h

; v

hjK

2 P

1

(K); v

h

is ontinuous at the middle

of eah edge; v

h

= 0 at the middle of eah edge on �
g

The loal degrees of freedom of P

1

n;0

are the linear forms < l

K;e

; u

hjK

>= u

h

(x

e

) and

the loal basis is

p

K;e

(x) = 1� 2�

S

(x) (2.1)

The deomposition of u

hjK

in this basis is

u

hjK

(x) =

X

e2�K

u

K;e

p

K;e

(x) (2.2)

The global degrees of freedom are the forms < l

a

; u

h

>= u

h

(x

a

) a 2 A

i

. The global

basis of the Crouzeix-Raviart spae P

1

n;0

is

p

a

(x) = p

K

1

;e

1

(x) 11

�

K

1

(x) + p

K

2

;e

2

11 Æ

K

2

(x) (2.3)

We take

�

K

1

and

Æ

K

2

in order to have p

aja

= 1: The edge a is oriented from K

1

toward

K

2

, with a = e

1

in K

1

and a = e

2

in K

2

. The global deomposition of u

h

is

u

h

(x) =

X

a2A

i

u

a

p

a

(x) (2.4)

with u

a

= u

K

1

;e

1

= u

K

2

;e

2

: The spae X

1;h

is

X

1;h

=

n

p

h

: 
! R

2

= p

hjK

2 P

1

(K)

2

8K ; p

h

� �

a

(2.5)

ontinuous at the middle of eah edge a 2 A

i

o

(2.6)

The loal degrees of freedom of X

1;h

are

< L

K;e

; p

hjK

>=

Z

e

p

h

� �

K;e

; < M

K;e

; p

hjK

>=

Z

e

p

h

� �

K;e

(2.7)

The orresponding loal basis is B

K

=

n

P

K;e

(x) ; Q

K;e

(x) ; e 2 � K

o

where the aÆne

vetorial funtions P

K;e

, Q

K;e

are

P

K;e

(x) =

p

K;e

(x)

jej

�

K;e

; Q

K;e

(x) =

p

K;e

(x)

jej

�

K;e

(2.8)

p

hjK

may be written in the form

p

hjK

(x) =

X

e2�K

[v

K;e

P

K;e

(x) + w

K;e

Q

K;e

(x)℄ (2.9)
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with v

K;e

=< L

K;e

; p

hjK

> ; w

K;e

=< M

K;e

; p

hjK

>. The global degrees of freedom

of X

1;h

are the linear forms de�ned for a 2 A, K 2 T

h

; e 2 �K

< L

a

; p

h

>=

Z

a

p

h

� �

a

; < M

K;e

; p

h

>=< M

K;e

; p

hjK

> (2.10)

The orresponding global basis is B = fP

a

(x) ; Q

K;e

(x) ; a 2 A ; K 2 T

h

; e 2 �Kg with

P

a

(x) =

1

jaj

p

a

(x) �

a

. The global deomposition of p

h

2 X

1;h

is

p

h

(x) =

X

a2A

v

a

P

a

(x) +

X

K

X

e2�K

w

K;e

Q

K;e

(x) (2.11)

where v

a

=< L

a

; p

h

>. In addition v

a

= v

K

1

;e

1

= �v

K

2

;e

2

. Let us desribe now the

disrete system (1.2). Equation (1.2)

a

is equivalent to the NE equations

X

e2�K

v

K;e

= �jKj (�

0

f)

K

(2.12)

where �

0

is the orthogonal projetor onto the spae P

0

of the onstant funtions in eah

triangle. Equation (1.2)

b

yields the 2NE equations

0 =

Z

K

(p

h

�ru

h

) ; 8K 2 T

h

(2.13)

or equivalently

jKj

3

X

e2�K

h

v

K;e

1

jej

�

K;e

+ w

K;e

1

jej

�

K;e

i

=

X

e2�K

u

K;e

jej

jKj

�

K;e

(2.14)

If we impose the homogeneous Dirihlet boundary onditions by

u

a

= 0 8 a 2 A

b

(2.15)

then we have 3NE + NA

b

equations. On the other side the total number of unknows

is 2NA+ 3NE. Sine 3NE +NA

b

= 2NA, we have to �nd 3NE additional equations.

The hoie suggested in [9℄ is to enfore loally the equations p

h

�ru

h

= 0 along eah

edge e of eah triangle K by :

Z

e

(p

h

�ru

h

) � �

K;e

= 0 8K 2 T

h

; 8e 2 �K (2.16)

or equivalently

w

K;e

= 2 (u

K;e

0

� u

K;e

00

) (2.17)

This is equivalent to write the 3NE orthogonality relations

Z

K

(p

h

�ru

h

) �Q

K;e

= 0 8K 2 T

h

; e 2 �K (2.18)

This suggests to selet the following test spaes X

2;h

and M

2;h

in (1.2)

� X

2;h

= (P

0

)

2

+ V et fQ

K;e

; K 2 T

h

; e 2 � Kg

� M

2;h

= P

0

The dimensions of X

2;h

and M

2;h

are

dim X

2;h

= 5NE dim M

2;h

= NE (2.19)
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Therefore, due to (1.8), the following neessary relation holds

dimX

1;h

+ dimM

1;h

= dimX

2;h

+ dimM

2;h

(2.20)

Note that X

2;h

is nothing but the spae

X

2;h

=

n

q

h

: 
! R

2

= q

hjK

2 P

1

(K)

2

; div q

hjK

= 0 8K 2 T

h

o

(2.21)

This results from the fat that for any K 2 T

h

, e 2 � K, jKj div Q

K;e

= �

K;e

� �

K;e

= 0

and from a dimensional omparison. Finally, the disrete system an be settled as: �nd

(u

h

; p

h

) 2M

1;h

�X

1;h

suh that

8

>

>

<

>

>

:

X

K

(div p

h

+ f; v

h

)

0;K

= 0 8v

h

2M

2;h

X

K

(p

h

�ru

h

; q

h

)

0;K

= 0 8q

h

2 X

2;h

(2.22)

or equivalently, for eah K 2 T

h

8

>

>

>

>

>

<

>

>

>

>

>

:

X

e2�K

v

K;e

= �jKj (�

0

f)

K

NE equations

1

3

X

e2�K

h

v

K;e

jej

�

K;e

+

w

K;e

jej

�

K;e

i

=

X

e2�K

u

K;e

jej

jKj

�

K;e

2 NE equations

w

K;e

= 2 (u

K;e

0

� u

K;e

00

) 3 NE equations

(2.23)

with the boundary onditions u

a

= 0 for a 2 A

b

.

Let us briey desribe now the matrix form of (2.23), (f also [10℄). Introduing the

notation

U

K

=

2

4

u

K;e

1

u

K;e

2

u

K;e

3

3

5

; V

K

=

2

4

v

K;e

1

v

K;e

2

v

K;e

3

3

5

; W

K

=

2

4

w

K;e

1

w

K;e

2

w

K;e

3

3

5

(2.24)

(2.23) may be written as

�

�

~

L

K;1

U

K

+

~

M

K;1

V

K

+

~

M

K;2

W

K

= �

~

N

K

W

K

=

~

L

K;2

U

K

(2.25)

with �

i

= �

K;e

i

; �

i

= �

K;e

i

; i = 1; 2; 3;

~

L

K;1

=

1

jKj

2

4

0 0 0

je

1

j �

x

1

je

2

j �

x

2

je

3

j �

x

3

je

1

j �

y

1

je

2

j �

y

2

je

3

j �

y

3

3

5

;

~

M

K;1

=

1

3jKj

2

6

4

3 3 3

jKj

je

1

j

�

x

1

jKj

je

2

j

�

x

2

jKj

je

3

j

�

x

3

jKj

je

1

j

�

y

1

jKj

je

2

j

�

y

2

jKj

je

3

j

�

y

3

3

7

5

~

M

K;2

=

1

3jKj

2

6

4

0 0 0

jKj

je

1

j

�

x

1

jKj

je

2

j

�

x

2

jKj

je

3

j

�

x

3

jKj

je

1

j

�

y

1

jKj

je

2

j

�

y

2

jKj

je

3

j

�

y

3

3

7

5

~

N

k

=

2

4

(�

0

f)

K

0

0

3

5

;

~

L

K;2

= 2

2

4

0 1 �1

�1 0 1

1 �1 0

3

5
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Equation (2:25)

a

gives V

K

in funtion of U

K

by

V

K

= �N

K

+ L

K;1

U

K

(2.26)

with

N

K

=

~

M

�1

K;1

~

N

k

; L

K;1

=

~

M

�1

K;1

h

~

L

K;1

�

~

M

K;2

~

L

K;2

i

U

K

(2.27)

System (2.23) results now in a system in the (u

a

)

a2A

i

unknowns by eliminating v

a

for

any internal edge a 2 A

i

, with orientation from K

1

towards K

2

; a = e

1

in K

1

; a = e

2

in

K

2

by v

K

1

;e

1

+ v

K

2

;e

2

= 0. This yields a linear system AU = b, U = (u

a

)

a2A

i

, whih is

[L

K;1

U

K

1

℄

e

1

+ [L

K;2

U

K

2

℄

e

2

= [N

K

1

℄

e

1

+ [N

K

2

℄

e

2

(2.28)

One (2.28) is solved, p

hjK

is evaluated by (2.9) where V

K

and W

K

are given by (2.26),

(2.25). Note �nally that (2.9) is nothing but the loal following Helmoltz deomposition

p

hjK

(x) = r'

1

h

+r

?

'

2

h

(2.29)

where

'

1

h

(x) =

jKj

2

X

e2�K

v

K;e

jej

2

p

2

K;e

(x) ; '

2

h

(x) = �

jKj

2

X

e2�K

w

K;e

jej

2

p

2

K;e

(x) (2.30)

B. Numerial analysis

Lemma 2.1. Disrete system (2:23) has an unique solution.

Proof. Sine dim X

1;h

+ dim M

1;h

= dim X

2;h

+ dim M

2;h

, it is suÆient to prove

that (�

0

f)

K

= 0 for any K ensures u

h

= 0, p

h

= 0. From (div p

h

; v

h

)

0;K

= 0 for any

v

h

2 P

0

, we infer by (2.21) that p

h

2 X

2;h

. Taking q

h

= p

h

�ru

h

in (2.22), we dedue

that p

h

= ru

h

. In partiular p

h

is onstant in eah triangle K. We have now

X

K

(p

h

; ru

h

)

0;K

= �

X

K

(div p

h

; u

h

)

0;K

+

X

K

X

e2�K

Z

e

(p

h

� �

K;e

)u

h

=

X

K

h

X

e2�K

(p

h

� �

K;e

)

Z

e

(u

h

� u

K;e

) +

X

e2�K

u

K;e

Z

e

p

h

� �

K;e

i

Sine u

K;e

=

1

jej

Z

e

u

h

and

X

K

X

e2�K

u

K;e

Z

e

p

h

� �

K;e

=

X

a2A

i

u

a

h

Z

a

(p

hjK

1

� �

a

� p

hjK

2

� �

a

)

i

we dedue by midpoint ontinuity of p

h

� �

a

on eah interior edge a;

0 =

X

K

(p

h

;ru

h

)

0;K

=

X

K

jp

h

j

2

0;K

=

X

K

jru

h

j

2

0;K

Therefore p

h

= ru

h

= 0 and then u

h

= 0.

In order to obtain well-posedness of disrete problem (2.22), let us expliitely perform

the elimination of p

h

in order to write the sheme in the following form
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- a disrete system in u

h

only.

- a loal reonstrution formula of p

h

in funtion of u

h

.

Proposition 2.2. The FVbox sheme (2:22) is equivalent to the following sheme :

(i) u

h

2 P

1

n;0

is the solution of the modi�ed non-onforming method

X

K

(ru

h

; r v

h

)

0;K

=

X

K

(f; �

0

v

h

+ rv

h

� A

K

)

0;K

8 v

h

2 P

1

n;0

(2.31)

where A

K

is the vetor depending only of the geometry of K, given by

A

K

=

1

6

P

�e

j�ej

2

X

e2�K

(je

0

j

2

� je

00

j

2

) jej �

K;e

(2.32)

(ii) The pieewise aÆne funtion p

h

is given in funtion of ru

h

and �

0

f by the loal

representation formula of p

h

in funtion of ru

h

and �

0

f is

p

hjK

(x) = ru

hjK

+r p

hjK

�

��!

x

K

x (2.33)

where

r p

hjK

= �

(�

0

f)

K

P

�e2�K

j�ej

2

X

e2�K

jej

2

�

e


 �

e

(2.34)

(iii) The orresponding loal deomposition (2:9) of p

hjK

is

p

hjK

(x) =

X

e2�K

[v

K;e

P

K;e

(x) + w

K;e

Q

K;e

(x)℄ (2.35)

with

v

K;e

= jej

�u

h

��

K;e

�

jej

2

jKj (�

0

f)

K

P

�e2�K

j�ej

2

; w

K;e

= jej

�u

h

��

K;e

(2.36)

Proof. Let us �rst prove (iii) . Taking the average of p

K;e

(x) over K, we get sine,

Z

e

p

K;e

(x) =

jKj

3

1

jKj

Z

K

p

h

=

1

3

X

e2�K

1

jej

[v

K;e

�

K;e

+ w

K;e

�

K;e

℄ = ru

hjK

(2.37)

For eah e 2 �K, the deomposition of ru

hjK

in (�

K;e

; �

K;e

) is

ru

hjK

=

�u

h

��

K;e

�

K;e

+

�u

h

��

K;e

�

K;e

(2.38)

Therefore we have still

ru

hjK

=

1

3

X

e2�K

[

�u

h

��

K;e

�

K;e

+

�u

h

��

K;e

�

K;e

℄ (2.39)

Identifying (2.37) and (2.39) and taking in aount w

K;e

= jej

�u

h

��

K;e

we obtain

X

e2�K

1

jej

v

K;e

�

K;e

=

X

e2�K

�u

h

��

K;e

�

K;e

(2.40)
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From the identity

X

e2�K

jej �

K;e

= 0, we dedue that there exists a onstant C

K

suh that

v

K;e

jej

2

=

1

jej

�u

h

��

K;e

+ C

K

(2.41)

Finally, sine

X

e2�K

v

K;e

= �jKj (�

0

f)

K

, C

K

is given by

C

K

= �

jKj

P

�e2�K

j�ej

2

(�

0

f)

K

(2.42)

and (2.36) follows from (2.41).

We prove now (ii). Starting from (2.35), we have (f (2.1) for the de�nition of p

K;e

)

p

hjK

(x) =

X

e2�K

p

K;e

(x)

jej

h

v

K;e

�

K;e

+ w

K;e

�

K;e

i

(2.43)

with v

K;e

, w

K;e

given by (2.36). Sine ru

h

=

�u

h

��

K;e

�

K;e

+

�u

h

��

K;e

�

K;e

we get

p

hjK

(x) = ru

hjK

�

jKj (�

0

f)

K

P

�e2�K

j�ej

2

X

e2�K

p

K;e

(x) jej �

K;e

(2.44)

In eah triangle K we may write the aÆne funtion p

K;e

(x) as

p

K;e

(x) =

1

3

+

jej

jKj

(�

K;e

�

��!

x

K

x) (2.45)

Substituting (2.45) into (2.44) yields

p

hjK

(x) = ru

hjK

�

(�

0

f)

K

P

�e

j�ej

2

X

e2�K

jej

2

(�

K;e

�

��!

x

K

x) �

K;e

(2.46)

Thus, the gradient of p

hjK

is

r p

hjK

= �

(�

0

f)

K

P

�e

j�ej

2

X

e2�K

jej

2

�

K;e


 �

K;e

(2.47)

wih onludes (ii).

Finally, we prove (i). Suppose given v

h

(x) =

P

a2A

i

v

a

p

a

(x) a funtion in P

1

n;0

. The

restrition of v

h

to any triangle K is v

hjK

(x) =

P

e2�K

v

K;e

p

K;e

(x). We have the identity

0 =

X

a2A

i

Z

a

v

a

[p

h

� �

a

℄ = �

X

K

X

e2�K

Z

e

v

K;e

(p

h

� �

K;e

) (2.48)

For any x 2 e, we have v

K;e

= v

K;e

p

K;e

(x) = v

h

(x) � v

K;e

0

p

K;e

0

(x) � v

K;e

00

p

K;e

00

(x).

Replaing v

K;e

by this value in (2.48), we get

0 = �

X

K

X

e2�K

Z

e

v

h

(p

h

� �

K;e

)

| {z }

(I)

+

X

K

X

e2�K

Z

e

[v

K;e

0

p

K;e

0

(x) + v

K;e

00

p

K;e

00

(x)℄ (p

h

� �

K;e

)

| {z }

(II)

(2.49)
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Replaing p

h

(x) by its value (2.33) and taking in aount

Z

e

p

K;e

0

=

Z

e

p

K;e

00

= 0 the

seond term is

(II) =

X

K

X

e2�K

Z

e

v

K;e

0

p

K;e

0

(x) [�

K;e

�r p

hjK

�

��!

x

K

x℄+v

K;e

00

p

K;e

00

(x) [�

K;e

�r p

hjK

�

��!

x

K

x℄

(2.50)

Sine p

K;e

0

; p

K;e

00

are aÆne on e and p

K;e

0

(m

e

) = p

K;e

00

(m

e

) = 0, Simpson's quadrature

rule yields

(II) =

X

K

X

e2�K

jej

6

n

(v

K;e

00

� v

K;e

0

)

h

�

K;e

� r p

hjK

�

���!

x

K

S

0

i

� (v

K;e

00

� v

K;e

0

)

h

�

K;e

� r p

hjK

�

����!

x

K

S

00

io

The identity v

K;e

00

� v

K;e

0

= �

jej

2

�v

h

��

K;e

; allows to write

(II) =

X

K

X

e2�K

jej

3

12

(�

K;e

� r p

hjK

� �

K;e

)

�v

h

��

K;e

(2.51)

We write now the loal deomposition of r p

hjK

in the basis B

K;e

of 2 � 2 matries

B

K;e

= f�

K;e


 �

K;e

; �

K;e


 �

K;e

; �

K;e


 �

K;e

; �

K;e


 �

K;e

g

We have

�

K;e

0

= � os �

00

�

K;e

+ sin �

00

�

K;e

; �

K;e

00

= � os �

0

�

K;e

� sin �

0

�

K;e

(2.52)

Replaing �

K;e

0


 �

K;e

0

and �

K;e

00


 �

K;e

00

by their values in funtion of the elements of

B

K;e

, we obtain

r p

hjK

= �

(�

0

f)

K

P

�e

j�ej

2

"

�

jej

2

+ je

0

j

2

(os �

00

)

2

+ je

00

j

2

(os �

0

)

2

	

�

K;e


 �

K;e

+

n

je

0

j

2

(sin �

00

)

2

+ je

00

j

2

(sin �

0

)

2

o

�

K;e


 �

K;e

+

�

�

2jKj

jej

2

�

je

0

j

2

� je

00

j

2

�

�

[�

K;e


 �

K;e

+ �

K;e


 �

K;e

℄

#

The omponent of r p

hjK

onto �

K;e


 �

K;e

is

�

K;e

� r p

hjK

� �

K;e

=

2jKj (�

0

f)

K

�

P

�e

j�ej

2

�

jej

2

(je

0

j

2

� je

00

j

2

)

and we dedue from (2.51).

(II) =

X

K

jKj (�

0

f)

K

"

r v

h

�

(

1

6

P

�e

j�ej

2

X

e2�K

(je

0

j

2

� je

00

j

2

) jej �

K;e

)#

(2.53)

De�ning for any K the vetor A

K

by

A

K

=

1

6

P

�e

j�ej

2

X

e2�K

(je

0

j

2

� je

00

j

2

) jej �

K;e

(2.54)
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we obtain

(II) =

X

K

jKj (�

0

f)

K

(r v

h

� A

K

) =

X

K

Z

K

f(rv

h

�A

K

) (2.55)

Summarizing (I) and (II) we dedue

0 = �

X

K

X

e2�K

Z

e

v

h

(p

h

� �

K;e

) +

X

K

jKj(�

0

f)

K

(rv

h

�A

K

)

= �

X

K

(p

h

; r v

h

)

0;K

�

X

K

(div p

h

; v

h

)

0;K

+

X

K

jKj(�

0

f)

K

(rv

h

� A

K

)

= �

X

K

(ru

h

; r v

h

)

0;K

+

X

K

(f ; (�

0

v

h

))

0;K

+

X

K

(f ;rv

h

� A

K

)

0;K

Whih is (2.31). Note that the vetors A

K

verify an estimate

sup

K2T

h

jA

K

j � Ch (2.56)

Where C is independant of h:

Let us hek now the equivalene between the FVbox sheme (2.22) and the sheme

(2.31, 2.35). The sheme (2.22) has an unique solution by Lemma 2.1, whih is also so-

lution of sheme (2.31, 2.35). Sine this lattest sheme has learly at most one solution,

it has exatly one solution, whih is the solution of (2.22).

Note that it results from (2.31) that the global linear system in the unknowns (u

a

)

a2A

i

is in fat symmetri de�nite positive. In order to dedue from the preeding results the

well-posedness of disrete problem (2.22), we need the following disrete ounterpart of

the Poinar�e inequality in the spae H

1

0

+P

1

n;0

, [16℄. Let us mention that the proof given

in [10℄ is inomplete, sine the inequality is proved there separately for u 2 H

1

0

; u 2 P

1

n;0

but not for u 2 H

1

0

+P

1

n;0

. Moreover, the hypothesis made in [10℄ on the mesh is useless.

We give a proof for ompleteness.

Lemma 2.3. For u 2 H

1

0

+ P

1

n;0

, we have

juj

0;


� C juj

1;h

where C is a onstant depending only of 
.

Proof. We have

juj

0;


= sup

g2L

2

;g 6=0

(u; g)

0;


jgj

0;


(2.57)

For any g 2 L

2

(
), there exists p 2 H

1

(
)

2

suh that

div p = g ; kpk

1;


� C (
) jgj

0;


(2.58)

(u; g)

0;


= (div p; u)

0;


= �

X

K

(ru; p)

0;


| {z }

(I)

+

X

K

Z

�K

(p � �

K

)u

| {z }

(II)

(2.59)
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A lassial alulation [6℄ yields

(II) = �

X

a2A

i

Z

a

(p � �

a

) [u℄ +

X

a2A

b

Z

a

(p � �

a

) u

= �

X

a2A

i

Z

a

(p � �

a

� p � �

a

) [u℄ +

X

a2A

b

Z

a

(p � �

a

� p � �

a

)u

=

X

K

X

e2�K

Z

e

(p � �

K;e

� p � �

K;e

)u

whih gives by Lemma 3 of [12℄ the estimate

j(II)j �

X

K

C h (jpj

1;K

juj

1;K

) � C h jpj

1;


juj

1;h

where C is independant of h. Finally

j(u; g)

0;


j � jpj

0;


juj

1;h

+ C h jpj

1;


juj

1;h

� C (
) (C h+ 1) jgj

0;


juj

1;h

and the result follows by dividing by jgj

0;


on eah side.

Proposition 2.4. The unique solution (u

h

; p

h

) 2M

1;h

�X

1;h

of problem (2:22) veri-

�es

ku

h

k

1;h

+ kp

h

k

1;h

� Cjf j

0;


(2.61)

Proof. Taking v

h

= u

h

in (2.31) and using the fat that the vetors A

K

are in O(h),

we dedue

ju

h

j

2

1;h

=

X

K

(f ; (�

0

u

h

) +ru

h

� A

K

)

0;K

(2.62)

� jf j

0;


(ju

h

j

0;


+ C h ju

h

j

1;h

) (2.63)

Using Lemma 2.3, we obtain, ku

h

k

1;h

� C jf j

0;


. From the loal representation formula

(2.46) for p

h

, we dedue

jp

h

j

0;


� ju

h

j

1;h

+ C h jf j

0;


� C

0

jf j

0;


(2.64)

In addition, jp

h

j

1;h

� Cjf j

0;


results from (2.34)

Reall that well-posedness of disrete problem (2.22) is equivalent to the two following

onditions (i),(ii) [3, 5, 7, 22, 11℄, applied to the bilinear form B

h

de�ned on (M

1;h

�

X

1;h

)� (M

2;h

�X

2;h

) by

B

h

[(u

h

; p

h

) ; (v

h

; q

h

)℄ = (p

h

; q

h

)

0;


+

X

K

(div p

h

; v

h

)

0;K

�

X

K

(q

h

; ru

h

)

0;K

(2.65)

(i) 9� > 0 suh that

sup

kq

h

;v

h

k

2;h

�1

B

h

[(u

h

; p

h

) ; (v

h

; q

h

)℄ � � k(u

h

; p

h

)k

1;h

8(u

h

; p

h

) 2M

1;h

�X

1;h

(ii) For any (v

h

; q

h

) 2M

2;h

�X

2;h

8 (u

h

; p

h

) 2M

1;h

�X

1;h

; B

h

[(u

h

; p

h

) ; (v

h

; q

h

)℄ = 0 =) (v

h

; q

h

) = (0; 0)



NONCONFORMING MIXED BOX SCHEMES 13

In addition, well-posedness of sheme (2.22) is equivalent to the one of the dual sheme:

�nd (v

h

; q

h

) 2M

2;h

�X

2;h

suh that for any (u

h

; p

h

) 2M

1;h

�X

1;h

B

h

[(u

h

; p

h

) ; (v

h

; q

h

)℄ = �(f ; u

h

) (2.68)

The latter sheme an be rewritten as, [11℄:

�nd (v

h

; q

h

) 2 P

0

�

h

(P

0

)

2

+ V etfQ

K;e

;K 2 T

h

; e 2 �Kg

i

suh that

8

<

:

�

X

K

(ru

h

; q

h

)

0;K

= �(f; u

h

)

0;


8u

h

2 P

1

n;0

(p

h

; q

h

)

0;


+ (div p

h

; v

h

)

0;


= 0 8p

h

2 (P

1

n

)

2

(2.69)

The standard error estimates for the two shemes are

Proposition 2.5.

(i) The solution (u

h

; p

h

) of sheme (2:22) veri�es the error estimate

ku� u

h

k

1;h

+ kp� p

h

k

1;h

� C h [juj

2;


+ juj

3;


℄ (2.70)

(ii) The solution (v

h

; q

h

) of sheme (2:69) veri�es the error estimate

ju� v

h

j

0;


+ jp� q

h

j

0;


� C h juj

2;


(2.71)

Proof. The proof follows the same lines than the one in [11℄. We have

ku� u

h

k

1;h

+ kp� p

h

k

1;h

� C

n

inf

(~u

h

;~p

h

)2M

1;h

�X

1;h

h

ku� ~u

h

k

1;h

+ kp� ~p

h

k

1;h

i

+ sup

(~v

h

;~q

h

)2M

2;h

�X

2;h

jB

h

[(u; p) ; (~v

h

; ~q

h

)℄ + (f ; ~v

h

)

0;


j

k(~v

h

; ~q

h

)k

H

2;h

o

It is straightfoward to hek, that, as in [11℄, the onsistany error vanishes. Therefore,

(i) results simply from the two standard interpolation estimates in spaes M

1;h

, X

1;h

inf

~u

h

2M

1;h

ku� ~u

h

k

1;h

� C h juj

2;


; inf

~p

h

2X

1;h

kp� ~p

h

k

1;h

� C h jpj

2;


(2.72)

For (ii) we have

ju� v

h

j

0;


+ jp� q

h

j

0;


� C

n

inf

(~v

h

;~q

h

)2M

2;h

�X

2;h

h

ju� ~v

h

j

0;


+ jp� ~q

h

j

0;


i

+ sup

(~u

h

;~p

h

)2M

1;h

�X

1;h

jB

h

[(~u

h

; ~p

h

) ; (u; p)℄ + (f ; ~u

h

)

0;


j

k(~u

h

; ~p

h

)k

H

1;h

o

The onsistany error is written as

B

h

[(~u

h

; ~p

h

) ; (u; p)℄ + (f ; ~u

h

)

0;


= (~p

h

; p)

0;


+

X

K

(div ~p

h

; u)

0;K

�

X

K

(r ~u

h

; p)

0;K

+ (f ; ~u

h

)

0;


=

X

K

Z

�K

(~p

h

� �

K

)u

| {z }

(I)

�

X

K

Z

�K

(p � �

K

) ~u

h

| {z }

(II)

A lassial argument gives :

j(I)j � C h j~p

h

j

1;h

jf j

0;


; j(II)j � C h jf j

0;


j~u

h

j

1;h

(2.73)
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The result follows from the two standard interpolation estimates

inf

~v

h

2M

2;h

ju� ~v

h

j

0;


� C h juj

1;


; inf

~q

h

2X

2;h

jp� ~q

h

j

0;


� C h jpj

1;


(2.74)

Another possibility to derive error estimate (2.70) is to use the redued sheme (2.31)

in u

h

. We an prove that

ku� u

h

k

1;h

� C h juj

2;


:

Error estimate (2.70) for p

h

is derived in a seond step from the representation formula

(2.33).

Finally, we have the following seond order error estimate in the L

2

norm whose proof

follows the same lines than the one in [11℄.

Proposition 2.6. The solution u

h

2 P

1

n;0

veri�es

ju� u

h

j

0;


� C h

2

(juj

2;


+ juj

3;


) (2.75)

III. THE CASE (BDM

1

+r

?

B

NC

K

)� P

2

NC;0

A. Disrete equations

In this setion, we desribe another FVbox sheme still having form (1.2). This sheme

is losely onneted to the non-onforming pieewise quadrati method of Fortin and

Soulie [15℄, and to its interpretation as a mixed method given by Farhloul and Fortin in

[14℄. In fat, we prove that our sheme is nothing but the hybridization of this method.

Let us �rstly reall the two spaes usefull in the sequel. The �rst spae is the spae

M

1;h

= P

2

n;0

of salar quadrati funtions ontinuous at the two Gaussian nodes on eah

interfae a 2 A

i

, vanishing at the Gaussian nodes of eah boundary edge a 2 A

b

. An

important feature of this spae is that the values of u

hjK

2 P

2

n;0

at the six gaussian

points on �K are not an unisolvant set of linear forms. Indeed, there is a non-trivial

funtion vanishing at these six points, whih is the non-onforming quadrati bubble

funtion given by

b

n

K

= 2� 3 (�

2

1

+ �

2

2

+ �

2

3

) (3.1)

It is proved in [15℄ that M

1;h

=

^

M

1;h

�

~

M

1;h

where

^

M

1;h

is the quadrati onforming

spae P

2

;0

with homogeneous boundary Dirihlet onditions and

~

M

1;h

is the spae

~

M

1;h

=

fw

h

; w

hj

K

= �

K

b

n

K

; �

K

2 R 8K 2 T

k

g : Thus, the dimension of M

1;h

is

dim M

1;h

= dim

^

M

1;h

+ dim

~

M

1;h

= NA

i

+NP

i

+NE (3.2)

Thanks to the Euler relation NE�NA+NP = 1, we dedue that dim M

1;h

= 2NA

i

+1.

In addition, keeping notation (1.4) for the norms onto the spae H

1

0

+M

1;h

, we have

the following result, whose proof is analogous to the one of Lemma 2.3

Lemma 3.1. The semi-norm j j

1;h

is a norm on M

1;h

, equivalent to kuk

1;h

For the spae assoiated with the ux p

h

, we use the spae introdued in [14℄, X

1;h

=

^

X

1;h

+

~

X

1;h

where

^

X

1;h

= BDM

1

is the spae of Brezzi-Douglas-Marini [8℄ of lowest
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order de�ned by

BDM

1

=

n

p

h

2 H

div

(
) ; p

h

2 (P

1

(K))

2

8K 2 T

h

o

(3.3)

and

~

X

1;h

is de�ned by

~

X

1;h

= fp

jK

= �

K

r

?

b

n

K

; �

K

2 R 8K 2 T

h

g (3.4)

The spae

^

X

1;h

\

~

X

1;h

redues to the one dimensional spae generated by the funtion

X

K2T

h

r

?

b

n

K

. Consequently, we have dimX

1;h

= 2NA+NE � 1. Reall, [14℄, that X

1;h

oinides with the spae of vetorial funtions p

h

, aÆne in eah K 2 T

h

and verifying

the two weakened div-onformity properties:

8

<

:

(i)

R

e

(p

hjK

1

� �

e;K

1

+ p

hjK

2

� �

e;K

2

) = 0 for any e = �K

1

\ �K

2

(ii) For any internal vertex M;

P

K

R

�K

(p

h

� �) 

M

= 0 where  

M

is the standard P

1

-Lagrange funtion orresponding to M:

(3.5)

We have now to de�ne the test spaes M

2;h

, X

2;h

as disontinuous Galerkin spaes. In

order to keep the relation

dimM

2;h

+ dimX

2;h

= dimM

1;h

+ dimX

1;h

= 7NE (3.6)

we take M

2;h

= fv

h

2 L

2

(
) ; v

hjK

2 P

0

(K) 8K 2 T

h

g (dim M

2;h

= NE) and

X

2;h

= fq

h

2 (L

2

(
))

2

; q

hjK

2 (P

1

(K))

2

8K 2 T

h

g (dim X

2;h

= 6NE). The disrete

system has still form (1.2): �nd (p

h

; u

h

) 2 X

1;h

�M

1;h

suh that

8

>

>

<

>

>

:

X

K2T

h

(div p

h

+ f; v

h

)

0;K

= 0 8v

h

2M

2;h

X

K2T

h

(p

h

�ru

h

; q

h

)

0;K

= 0 8q

h

2 X

2;h

(3.7)

The following proposition states that this method is nothing but the sheme of Fortin

and Soulie [15℄

Proposition 3.2. Problem (3:7) has an unique solution (u

h

; p

h

) 2M

1;h

�X

1;h

given

by

(i) u

h

2M

1;h

is the solution of the standard variational problem:

X

K

(ru

h

; rw

h

)

0;K

= (�

0

f ; w

h

)

0;


8w

h

2M

1;h

(3.8)

(ii) p

h

is given by

p

hjK

= ru

hjK

(3.9)

Proof. We prove that (u

h

; p

h

) 2 M

1;h

�X

1;h

is solution of (3.7) if and only if it is

solution of (3.8), (3.9). Suppose given (u

h

; p

h

) 2M

1;h

�X

1;h

a solution of (3.7). Clearly,

we have p

h

= ru

h

(take in (3.7)

b

q

h

= p

h

� ru

h

). Let w

h

2 M

1;h

, Green's formula

yields

X

K

(ru

h

; rw

h

)

0;K

= �

X

K

Z

K

div p

h

w

h

+

X

K

Z

�K

(p

h

� �

K

) w

h

(3.10)
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Let us write p

h

= p

1;h

+ p

2;h

, with p

1;h

2

^

X

1;h

, p

2;h

=

X

K2T

h

�

K

r

?

b

n

K

: Sine

^

X

1;h

� H

div

,

the seond term in the right-hand side of (3.10) may be rewritten

X

K

Z

�K

(p

h

� �

K

)w

h

=

X

K

h

Z

�K

(p

1;h

� �

K

)w

h

+ �

K

Z

�K

(r

?

b

n

K

� �

K

)w

h

i

=

X

a2A

b

Z

a

(p

1;h

� �

a

)w

h

�

X

a2A

i

Z

a

(p

1;h

� �

a

) [w

h

℄

+

X

K

�

K

Z

�K

�b

n

K

��

K

w

h

For any w

h

2 P

2

(K), we have

R

�K

�b

n

K

��

K;e

w

h

d� = 0 . Therefore, the third term van-

ishes. In addition, sine [w

h

℄ (resp. w

h

) vanishes at Gauss nodes of eah internal (resp.

boundary) edge, the seond and �rst term vanish and (3.8) results from (3.7)

a

. Conse-

quently, any (u

h

; p

h

) 2M

1;h

�X

1;h

solution of problem (3.7) is solution of problem (3.8,

3.9), whih admits an unique solution in M

1;h

� (P

1

t:d:

)

2

where (P

1

t:d:

)

2

is the Galerkin-

disontinuous spae of aÆne funtions p

h

in eah triangle. This gives uniqueness of the

solution of (3.7). The existene follows from (3.6) and the linearity of (3.7). In partiular,

we have proved that the funtion ru

hjK

is in fat in X

1;h

.

Proposition 3.3. The following error estimates hold

ku� u

h

k

1;h

� C h

2

(juj

3;


+ j�uj

1;


) ; ju� u

h

j

0;


� C h

2

(juj

3;


+ j�uj

1;


) (3.11)

jp� p

h

j

0;


� C h

2

j�uj

0;


; jp� p

h

j

h;div

� C h j�uj

1;


(3.12)

Proof. Results from [15℄ and from p

h

= ru

h

.

B. Comparaison with the mixed method of Farhloul and Fortin

In [14℄, addressing the paper by Hiptmair [18℄, Farhloul and Fortin have introdued the

following mixed method: �nd (u

0

h

; p

0

h

) 2M

2;h

�X

1;h

suh that

8

>

>

<

>

>

:

X

K2T

h

(div p

0

h

+ f ; v

h

)

0;K

= 0 8v

h

2M

2;h

X

K2T

h

f(p

0

h

; q

h

)

0;K

+ (div q

h

; u

0

h

)

0;K

g = 0 8q

h

2 X

1;h

(3.13)

This problem has an unique solution (u

0

h

; p

0

h

) 2 M

2;h

� X

1;h

satisfying ku

0

h

k

1;h

+

kp

0

h

k

div;h

k � Cjf j

0;


. The hybrid form of (3.13) is: �nd (p

h

; u

h

; �

h

) 2 X

2;h

�M

2;h

��

h

suh that for any (q

h

; v

h

; �

h

) 2 X

2;h

�M

2;h

� �

h

8

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

:

X

K2T

h

n

(p

h

; q

h

)

0;K

+

Z

K

(div q

h

)u

h

dx�

Z

�K

(q

h

� �

K

)�

h

d�

o

= 0

X

K2T

h

Z

K

(div p

h

) v

h

+ (f ; v

h

)

0;


= 0

X

K2T

h

Z

�K

(p

h

� �

K

) �

h

= 0

(3.14)
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The spae �

h

of Lagrange multipliers is de�ned by �

h

= �

1;h

� �

2;h

with

�

1;h

=

n

�

h

2 L

2

(�

h

) ; �

hj

e

2 P

0

(e) 8 e 2 �

0

h

; �

hj

e

= 0 8 e 2 �

�

h

o

(3.15)

�

2;h

=

n

�

h

=  j

�

h

;  2 C

0

(
) ;  j

K

2 P

1

(K) ; 8K 2 T

h

;  j

�

= 0

o

(3.16)

�

h

denotes the set of edges of the element of T

h

, �

�

h

= fe 2 �

h

; e � �
g, �

0

h

= �

h

n�

�

h

.

Let us reall that u

h

2 P

2

n;0

writes u

h

= u



h

+ u

n

h

where u



h

2 P

2

;0

; u

n

h

2

~

M

1;h

denote

respetively the onforming and non-onforming part of u

h

.

The link between the box sheme (3.7) and the hybrid formulation (3.14) of the mixed

method (3.13) is given by the

Proposition 3.4. Let (u

h

; p

h

) 2 M

1;h

� X

1;h

be the solution of problem (P

h

), let

�

h

2 �

h

= �

1;h

� �

2;h

be de�ned by �

h

= �

1;h

+ �

2;h

where �

1

h

2 �

1;h

is de�ned for

a = [S

0

; S

00

℄ 2 A

i

by

(i) �

1

hja

=

1

3

[2u



h

(x

a

)� (u



h

(S

0

) + u



h

(S

00

))℄ 8 a 2 A

i

where u



h

denotes the onforming part of u

h

.

(ii) �

2

h

2 �

2;h

is the aÆne ontinuous funtion de�ned by the values of u



h

at the verties

of the mesh. Then

(a) (p

h

; �

0

u

h

) is the solution of mixed sheme (3:13).

(b) (p

h

; �

0

u

h

; �

h

) is the solution of (3:14).

Proof. (a) Let (u

h

; p

h

) 2 M

1;h

�X

1;h

be the solution of the FVbox sheme (3.7).

Sine (3.7)

a

and (3.13)

a

are idential, we just have to hek that (p

h

; �

0

u

h

) is solution

of equation (3.13)

b

. For q

h

in X

1;h

, sine div q

h

2 P

0

, we have

(p

h

; q

h

) =

X

K2T

h

(ru

h

; q

h

)

0;K

= �

X

K2T

h

(�

0

u

h

; div q

h

)

0;K

+

X

K2T

h

Z

�K

u

h

(q

h

� �

K

)

(3.17)

It results from the proof of Prop. 3.2, that the seond sum in (3.17) vanishes, whih

gives (3:13)

b

.

(b) By uniity of the solution of (3.14), it is suÆient to hek that (�

0

u

h

; p

h

; �

h

) de�ned

in Prop 3.4 is solution of (3.14). For q

h

2 X

2;h

, we have still (3.17).

De�ning � = (�

1

; �

2

) 2 �

1;h

��

2;h

by (i), (ii), we dedue easily from Simpson's quadra-

ture formula, that for any e 2 �K,

Z

e

(q

h

� �

K;e

)u



h

=

Z

e

(q

h

� �

K;e

)� (3.18)

Therefore, (�

0

u

h

; p

h

; �

h

) 2M

2;h

�X

2;h

� �

h

is solution of (3.14).

IV. THE CASE (RT

1

+r

?

B

NC

K

)� P

2

NC;0

A. Disrete equations

In this third sheme, we introdue a new spae for the approximation of the vetorial

unknow p

h

whih is X

1;h

= RT

1

+

~

X

1;h

where RT

1

is the standard Raviart-Thomas

spae of order 1 (see [23℄) de�ned by

RT

1

=

n

p

h

2 H

div

(
) ; p

hjK

2 RT

1

(K) 8K 2 T

h

o

(4.1)
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where for eahK 2 T

h

, RT

1

(K) = P

1

(K)

2

+P

1

(K)

�

x

1

x

2

�

. The spae

~

X

1;h

is introdued

in Set. III.A. Again, dimRT

1

\

~

X

1;h

= 1 and RT

1

\

~

X

1;h

= V et

�

P

K2T

h

r

?

b

n

K

�

. Using

dimRT

1

(K) = 8, and (1.8), we dedue dimX

1;h

= 3NE + 2NA� 1. In addition, using

the same method than in [15℄, we hek that X

1;h

has the following haraterization:

p

h

2 X

1;h

if and only if p

hjK

2 RT

1

(K) and p

h

veri�es the two weakened div-onformity

onditions (3.5). We still use M

1;h

= P

2

n;0

for the salar unknow u

h

whose dimension is

2NA

i

+ 1. Consequently, dimX

1;h

+ dimM

1;h

= 3NE + 2(NA + NA

i

) = 9NE. This

suggests to take for the test funtions the following Galerkin disontinuous spaes

X

2;h

=

n

q

h

2 (L

2

(
))

2

; q

hj

K

2 (P

1

(K))

2

; 8K 2 T

h

o

; dimX

2;h

= 6NE (4.2)

M

2;h

=

n

v

h

2 L

2

(
) ; v

hjK

2 P

1

(K) ;8K 2 T

h

o

; dimM

2;h

= 3NE (4.3)

We have dimX

2;h

+ dimM

2;h

= 9NE. The FVbox sheme reads still: �nd (u

h

; p

h

) 2

M

1;h

�X

1;h

suh that

8

>

>

<

>

>

:

X

K2T

h

(div p

h

+ f; v

h

)

0;K

= 0 8v

h

2M

2;h

X

K2T

h

(p

h

�ru

h

; q

h

)

0;K

= 0 8q

h

2 X

2;h

(4.4)

Proposition 4.1. Problem (4:4) has an unique solution (u

h

; p

h

) in M

1;h

�X

1;h

, given

by

(i) u

h

2M

1;h

is solution of

X

K

(ru

h

; rw

h

)

0;K

= ((�

1

f) ; w

h

)

0;


8w

h

2M

1;h

(4.5)

where �

1

is the orthogonal projetor onto the aÆne funtions in eah triangle K.

(ii) p

h

is loally given by

p

hjK

= ru

hjK

�

1

3

n

(�

1

f)

��!

x

K

x��

1

[(�

1

f)

��!

x

K

x℄

o

(4.6)

Proof. Problem (4.4) is linear in (u

h

; p

h

) and the number of unknowns is equal to

the number of equations. Therefore we just have to prove uniity of the solution of (4.4)

whih is given by uniity of problem(4.5-4.6) .

(i) Suppose (u

h

; p

h

) 2 M

1;h

�X

1;h

satis�es (4.4). For any w

h

2 P

2

n;0

, one has rw

h

2

X

2;h

. Therefore, by (4.4)

a

and Green's formula

X

K

(ru

h

; rw

h

)

0;K

= �

X

K

(div p

h

; w

h

)

0;K

+

X

K

Z

�K

(p

h

� �

K

)w

h

(4.7)

The deomposition of p

hjK

2 X

1;h

= RT

1

+ r

?

b

n

writes p

hjK

= p̂

hjK

+ �

K

r

?

b

n

K

.

Therefore, the seond part of the r.h.s. of (4.7) is

X

K

Z

�K

(p̂

h

� �

K

) w

h

+

X

K

�

K

Z

�K

�b

n

K

��

K

w

h

.

As in the proof of Prop. 3.2, we dedue

X

K

(ru

h

; rw

h

)

0;K

= �

X

K

(div p

h

; w

h

)

0;K

(4.8)
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SineM

2;h

is the Galerkin disontinuous P

1

spae, we dedue from (4:4)

a

that div p

hjK

=

��

1

f , whih gives (4.5).

(ii) Consider now p

hjK

= p̂

hjK

+ �

K

r

?

b

n

K

. The loal expression of p̂

hjK

2 RT

1

(K) is

p̂

hjK

= p

hjK

+ [A

K

�

��!

x

K

x℄

��!

x

K

x, where p

h

2 P

1

(K)

2

and A

K

is a onstant vetor in K.

The divergene of p

h

redues to

div p

h

= div p

h

+ 3 (A

K

�

��!

x

K

x) (4.9)

Sine div p

h

= ��

1

f , A

K

= �

1

3

r (�

1

f).

In addition, we have (�

1

f)

K

= (�

0

f)

K

+r (�

1

f)

K

�

��!

x

K

x, thus, the quadrati part of p

hjK

is (A

K

�

��!

x

K

x)

��!

x

K

x = �

1

3

[(�

1

f��

0

f)

��!

x

K

x℄. The remaining part ~p

hjK

= p

hjK

+�

K

r

?

b

n

K

is linear and is determined, by (4.4),

X

K

(~p

h

�ru

h

; q

h

)

0;K

=

1

3

X

K

�

(�

1

f ��

0

f)

��!

x

K

x; q

h

�

0;K

8q

h

2 (P

1

(K))

2

(4.10)

whih gives (4.6).

We have proved existene and uniity of problem (4.4) and its equivalene with problem

(4.5-4.6).

B. Numerial analysis

We dedue from the results of the preeding setion

Proposition 4.2. If u 2 H

4

(
);

(i) ju� u

h

j

1;h

� Ch

2

(juj

3;


+ j�uj

2;


)

(ii) ju� u

h

j

0;h

� Ch

3

(juj

3;


+ j�uj

2;


)

(iii) kp� p

h

k

div;


� Ch

2

j�uj

2;


Proof. The proof of (i) uses the method of proof of, e.g. [6℄ applied to (4.5). One

has only to use the property of P

2

n;0

to satisfy Iron's Path test and to apply Lemma 3

of [12℄. (ii) is proved by an Aubin-Nitshe argument as in [6℄. Finally, (iii) results easily

from the representation formula (4.6).

Implementing method (4.4) is quite easy using (4.5), (4.6) and following the indiations

given in [15℄ for the implementation of the non-onforming pieewise quadrati element

on triangles.
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