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Abstract

The box-scheme of H.B. Keller, initially derived in [22] for the one-dimensional heat equa-
tion, is a mixed finite volume scheme for conservative equations. The basic principle of the
scheme for equations like divp(u,Vu) = f, is to take the average onto the same mesh of
the two equations of the mixed form, the conservation law divp = f and the constitutive
law p = ¢(u, Vu). In this paper, we perform the numerical analysis of two Keller-like box-
schemes for the one-dimensional convection-diffusion equation cuy, — euge = f. In the first one,
introduced by B. Courbet in [9, 10], the numerical average of the diffusive flux is upwinded
along the sign of the velocity, giving a first order accurate scheme. The second one is fourth
order accurate. It is based onto the Euler-MacLaurin quadrature formula for the average of
the diffusive flux. We emphasize in each case the link with the SUPG finite element method.

MSC Subject Classification: 35J25 - 65M15 - 65N30 - 76M12 - 76M20.
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1 Introduction

The box-scheme of H.B. Keller [22], is basically a mixed finite volume method, which consists in
taking the average of a conservation law and of the associated constitutive law at the level of the
same mesh cell. In particular, only one mesh is used as well as support of the degrees of freedom
as for averaging the two equations. This design is different from the one of the ”cell-centered”
or ”cell-vertex” finite volume methods. Recall that the cell-centered finite volume method uses
numerical flux formulas at the interfaces of the mesh, involving two cells, or even more (MUSCL
method). In the cell-vertex finite volume method, (also called “box-method” or ”control volume
method”, [17, 2, 16, 4]), two different meshes are used, one as support of the degrees of freedom,
and the second for averaging the equations. The price to pay for the coherence of the box-scheme
formulation is a careful counting of the total degrees of freedom of the conservative and flux
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unknowns, and of the number of the test functions. In [11, 12, 13], it has been proved on the
2D Poisson problem, that several natural generalizations of the scheme of Keller are possible
in multidimensions, by using FEM spaces originating from the mixed finite-element literature.
The scheme results in a mixed Petrov-Galerkin scheme, using piecewise affine interpolants both
for the primary unknowns and for the flux. In particular cases, one obtains a scheme strongly
related to the hybridization of classical mixed finite element methods, [1]

The extension of the box-scheme to convection-dominated flows has already been addressed
in [30, 29, 7] in the context of compressible aerodynamics computations. Here, we are interested
in the design and numerical analysis of box-schemes for the stationary convection-diffusion
equation cug — euyy = f(z), in the spirit of the method of B. Courbet introduced in [9]. As
in the elliptic (or parabolic) case, the basic principle remains to introduce the diffusion flux
p = —eu, as an auxiliary variable. Two schemes are considered. In the first one, an upwinding
of the average Dy over a “box” K (a cell), is introduced. The expected effect is to prevent the
well-known spatial exponential instability at a stationary state u(z), solution of cuy — ey, = 0,
especially in boundary layers. However, the resulting scheme is only first order accurate in the
finite-difference sense. This is the same effect as the one due to the upwinding of convective
derivative in finite difference or finite element methods. The second scheme uses as a main
tool the fourth order accurate Euler-MacLaurin quadrature formula on intervals, as suggested
in [9]. In this case, we obtain a fourth order accurate scheme, in the finite difference sense. We
emphasize the following properties of these two schemes. Firstly, they are mixed schemes with a
purely local reconstruction formula for the flux. This is a well known property in the mixed finite
element method for elliptic problems, [1, 24, 12], but it is less standard for convective dominated
equations. Secondly, they admit a formulation as non-standard versions of the streamline-
upwind-Petrov-Galerkin (SUPG) method [3, 18, 19, 20, 21, 26] with a particular design of upwind
parameters. Note that the design of well-suited upwind parameters for such methods is still an
active research topic, [15]. The methodology introduced here can provide interesting possibilities
for designing such parameters. Finally, let us mention that there is currently a renewal of
interest in the design of so-called finite difference “compact schemes”, for various applications,
(convection diffusion, wave equation, ...) [23, 28, 5, 6, 31], after earlier works in the ’70, such
as [8]. We believe that the formalism of the box-scheme of Keller can bring some clarity in the
design of such schemes, allowing to work directly on unstructured meshes, instead of in the finite
difference framework.

The present paper is a first attempt to derive in a systematic way high order compact schemes
of mixed type in the spirit of [22, 9, 10, 12, 13], one of the applications being computing flows in
porous media. The numerical simulation of such flows gives still rise to a considerable amount of
works in which the mixed finite element method, the discontinuous Galerkin method, the finite
volume method or the control volume method are widely used.!. For general references on finite
volumes from a mathematical point of view, we refer to the books [14, 17, 25].

The outline of the paper is as follows. After stating the notation in Sect.2, we recall in Sect. 3
in the case of the 1D Poisson equation, the design of the box-scheme of Keller, before to perform
its numerical analysis in the FEM framework. A new fourth-order box-scheme is afterwards
introduced and analyzed in the same way. In Sect.4, we perform the numerical analysis of a
box-scheme for the stationary convection-diffusion equation previously proposed by B. Courbet
in [9, 10]. Finally, in Sect.5, we show how the fourth order scheme of Sect.3 can be extended to
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the convection-diffusion equation. For both schemes, the link with the SUPG method is stressed.
Numerical results as well as extensions to the unstationary convection-diffusion equation or to
multidimensions will be reported elsewhere.

2 Notation

In all the paper, we consider the linear stationary convection-diffusion equation with constant
coefficients in the segment I =0, 1[. Recall that this equation is

Cly — EUgy = f(x), zel
{u(O)zEO, w(1) =0 (1)

The velocity is ¢ € R and the diffusion coefficient is € > 0. Problem (1) is well posed in H}(I),
with data f € L?(I). The solution is

gelefe) [ .
) = 9475 /0 6e((1 = 5)/) f(s)ds — /0 ge((w — 5)/€) F(3)ds 2)

with g.(z) = (e —1)/c if ¢ # 0 and go(z) = x. Let the interval I be discretized by a finite
element, possibly irregular mesh, with nodes z; = 0 < 22 < ... < zxy = 1. We call the cell
Kj_1/3=[zj-1, zj]a “box”, for 2 < j < N. The lenght of the box K;_y/5is hj_1/o = zj—xj 1,
with the quasi-uniformity hypothesis Cph = hy, < hj_1/o < h, where Cp, > 0 is a constant.
We call hj = % (hj_1/2 + hjt1/2) and hy = hg)9/2, hy = hy_1/2/2. The barycenter of the box
Kj_1/3 is wj_1/5. Each grid function (uj)i1<j<n is identified with the finite element function
up(z) belonging to the piecewise affine conforming space P!(I)

N
un (7) =) uj p; (x) (3)
j=1

where ¢; () is the standard “hat” function centered at node ;. We denote also by Pcl,o(I ) the
subspace of P!(I) of the functions uy(z) such that u; = uy = 0. In the sequel, we simply call
P! = PY(I), Pcl,o = PCI,O(I ). The orthogonal projector onto the functions constant in each box
is 11 which is given by

1
hj—1/2

@fap = [ f@ds ferr (@

The standard L? and H! norms are denoted by | . o, || . ||1,7, the scalar product in L? by
(; Jor or simply (; ). The H! semi-norm is | |1 ;. In addition, the L? mesh-dependent norm is
given by

N
|U|g,h = Z h “3 (5)
j=1
We skip the proof of the following Lemma, which establishes the link between the norms
lulo,r, |ulo,n, M%ul.

Lemma 2.1 (i) For u € P}, we have 3_%|u|0,h < ulo,r < |ulo,pn-
(ii) There ezists a constant C > 0 independent of h, such that for any u € Pc{o,

Chlulos < [ ulo < |ulos (6)



3 Two box-schemes for the one-dimensional stationary diffusion
equation

3.1 Keller’s box-scheme

Although rather simple, the interpretation and numerical analysis with finite elements of the
classical Keller’s box-scheme [22], seems not have been addressed in previous works. We sum-
marize here for convenience some of its properties in the case of the stationary one-dimensional
Poisson problem:
{ _Ua:a:(x):f(m) , wel (7)
uw(0)=0 , u(l)=0

The design of the box-scheme for (7) is in two steps, [11, 12]. Firstly, (7) is recasted in mixed
form

pr+f=0 (a)
p—uz=0 (b (8)
w(0)=u(l)=0 (c)

Secondly, we take the average of (8,) and (8;) onto the boxes K;_ /5, which gives for the exact
solution (u,p = uy)

p(x5) —p(xj—1) = —hj_1/2 (11 f)}iz1)2
hj—1y2 (0 p)jj—1/2 — [u(zj) —u(zj—1)] =0 (9)
u(zy) =u(xy)=0

Considering now (u;, pj)i<j<n approximations of u (z;), p (x;), (9) defines a numerical scheme
if we precise a formula expressing an approximation of (II° p)|j—1/2 in function of the discrete
values p;. The box-scheme of Keller is characterized by the trapezoidal approximation of the
projection (IT° P)j—1/2

1 1
(I p)jj1/2 = 3 (p(z;) +p(zj1)) — ﬁh?_l/me(quﬂ), §i—1/2 € Kj_1)2 (10)

Replacing (IT° P)jj—1/2 by % (pj +pj—1), suggests to define the box-scheme as

Pj —DPj—1 = _hj—1/2 (HO f)|j_1/2 N — 1 equations
%hj_l/g pj +pj—1] — [uj —uj—1] =0 N — 1 equations (11)
up =uny =0

(11) is effectively a square system in (u;, pj)i<j<n since the number of equations and the
number of unknowns are both equal to 2N. Note also that (11) coincides exactly with (9) when
replacing p by its P!-interpolant. The implementation of (11) is carried out by eliminating p;
by static condensation, [11]. Solving the 2 x 2 system (11) in (pj_1, p;) yields for 2 < j < N

1 1
T (uj —uj-1) + 3 hi—12 (M°f);_1/2

pj = ﬁ (wj —uj—1) = ghj 1o (°F)j 172

b=t = (12)



By identifying the two values of p; deduced from (12);_;/, and (12),41/2, we obtain the scheme
in the unknowns u; only

1 1 1
— ) — w1 = 2k 1 ). B 10(TIOF).
hj+1/2 (Ug+1 Ug) hj_1/2 (Ug Uj 1)] 2 [ ]+1/2( f)]+1/2 + hy 1/2( f)y 1/2]
Ul = uUnN = 0
(13)
If hji1/9 = hj_1/2 = h we recognize the finite difference compact scheme
1
—33 [jrr +uj1 = 2u] = 5 [0 F)j1/2 + (T f) -1 /0] (14)

This scheme is second order accurate with consistency error given by(we call u(z) a formal
solution of —ug, = f)

Ep(u) = —%[U(%‘H) +u(wj-1) — 2u(z;)] - %[(Hof)j-i-l/Q + (I10f) 10 (15)
—%h%mm +O(h") (16)

In [22], Keller proves two error estimates thanks to a finite difference analysis. Translated into
the finite element framework stated in Sect.2, these estimates read

(@) | a—Tuploy <Ch? 5 (b) |H°p—T"pplos < CR? (17)
where @ € P! 0 PE P! denote the standard P!—interpolants of u, p given by

N-1 N

ulzy)pj (@) 5 Blx) = pla))e; (@) (18)

=2 j=1

.

and where up, € Pcl,o, pp € P are

N—

H

N
uj pj () Z pjpj (x (19)
]:2 :

As mentionned by Keller, (17,) is not an error estimate, because p, € P!+ |1 pp|o s is not a
norm over P!, due to the presence of the oscillating mode pj = (=1)7,1 < j < N, such that
1% 0.7 = 0. In addition, (17,) is simply a first order error estimate in the L? norm | - |o due
to Lemma 2.1 (ii).

In fact, the interpretation of the box-scheme as a finite-element method allows to perform a
more precise numerical analysis. We note that (11) is equivalent to : find (up , pp) € Pcl,0 x P}

solution of
{ (Pho+f; o) =0 Vi eP’  (a)
(Ph = una; Gn) =0  Ygue P’  (b)

where PU stands for the space of piecewise constant functions on the mesh. Taking §, =
Vh,z» Up € P! o in (205) and noting that

(20)

(U’h,az ; vh,w) = (ph ; vh,w) = (pha: ; 1’ Uh) (H I3 ) (21)



The box-scheme is therefore equivalent to two decoupled schemes. Firstly, it reduces for u; to
the modified standard finite element method: find uy € PCI,O solution of

(una 5 vhe) =110 f 5 vn) Vo, € Py (22)
Secondly, py has the local expression given by (11), we can rewrite in the form

Phik; s () = Unaii,_y — (00 f)jj1ye (x =25 172) (23)

We derive now by a standard finite element analysis the well-posedness of scheme (11) as well
as a priori error estimates. The box-scheme can be rewritten

Phae = 1" f 5 upe =1py (24)
and the interpolate @, p of the exact solution u(z), p(z) = uy(z) verify
Po=—1°f; a, =1p (25)
Proposition 3.1

c

(i) The boz-scheme (11) has a unique solution (uyp, , py) € Pcl’0 x P! werifying

lunlle,r + el < Clflor (26)

(i) If (u,p) is the solution of (8), (i, p), their Pl —interpolants, then the following a priori error
estimates hold, (C is a generic constant independent of h)

(a) |lu—upllir <Ch|flor () |u—uplos <CR*||flLr
(c) lp—pulli,r <ChIfllr (d) |M°p—Tpulos < CH32 |1 (27)
(6) |H0ﬁ - HO Ph|0,l S Ch2 |u:1:a::1: 0,1

Proof: (i) results simply from (22) and (23). A standard error analysis in PCI,O yields esti-
mate (27,). Estimate (27,) results of the Aubin-Nitsche argument, together with the fact that
|f = T° flo,r < Ch|f|1,;- This estimate implies obviously the first Keller’s estimate in (17,).
Estimate (27.) results directly from (23). We prove now the two last estimates. Note that the
last estimate is precisely the one given by Keller in (17;), using finite-differencing arguments.
For the estimate (27,), we have the identities

p 13, = (p—pu; Ip = pn)os = (@ —ung ; p—pr) = —(@ — un; P — Ph,)
= (= f —TOF) < (1= ulog + fu = wnlo )l — TOflos < CHISIR,

2
0,1

which gives the result. For (27.), we decompose |II°p — I1° py, |g ; into a numerical quadrature
error part and a consistency part

05 —1py |5, = (5 —10p; W05 —1pp) + (Ip —1py s N5 —1%py)  (28)

(D) (1)

The trapezoidal error estimate (10 ) yields

5 —1Cp| < Chiplas (29)



which gives

[(I)] < Ch? |paglos|T°p — 1% o,y (30)
The term (/) vanishes because
(II) = (ug —upg; M°p—T"pp)os = (g — Gng 5 TP — 0 pp)os

= (g — Uz ; P—pPn) = — (0 —up ; Pe —Pha) =0

Finally, the error estimate (27.) results only from the second order quadrature (30). [

3.2 A fourth order box-scheme

Starting again from (9), we build an higher order box-scheme by replacing the trapezoidal
quadrature formula (10) by the fourth order formula deduced from the Euler-MacLaurin series.
Recall that this series reads, for any regular function F' defined on [a, b]

b i a /bF(t)dt = %(F Z BQ% 2l 1(F(2i71)(b) — F(2i71)(a)) —E, (31)

with an error term given by

Bomia2(b — a)?™t?

Ep = p2m+2) b 2
The B; are the Bernoulli numbers defined by the serie
+00
= > 1 (33)

1=0

Using the fourth order quadrature formula on the box K;_;,5 = [z 1,z;] deduced from (31)
yields

1 1
(Hop)j—1/2 = Q(P(wj) +p(zj_1) — ﬁhj—1/2(l7x($j) —px(zj_1)) — E;-),l/g (34)
with an error I
By 1/2
Ef_l/Q # (& 1/2)5 Tj-1 <&_1/2 <Tj (35)
Since pg(z) = —f(z), we deduce
1 1
(Hop)jq/z = 5(10(%‘) +P($jf1) + ﬁhjf1/2(f($j) - f(xjfl)) - Eé)_l/g (36)

Replacing now in (9) (I%p); 4 /2 by the approximated value

1(Pj +pj-1) + ihj—1/2(f($j) = flzj-1)) = %(Pj +pj-1) + h] 2T f1)5 1y (37)

2 12
allows to write the following box-scheme
pj—pj—1=—hj_1o(T° f);_1/2 X
3 hj—12[pj +pjl = [uj —uja] = 12h§’ 1/2(H0f,)j71/2 (38)
Ul = uUnN = 0



Solving (38) in (pj_1, pj) gives

{ pj—1=(uj —uj_1)/hj_1po+ 5 hj_1/2 (TOF)j 12 — Tlgh?_l/g(nof,)jflﬂ (39)

pj = (wj —uj1)/hj_1j0— S hj_1/o (IOf); 12 — Tlghi,l/g(ﬂof')j—lp

The scheme in u; after elimination of p; is now

1 1 1 1
- |:h]+—1/2 (wj+1 — ug) — T (uj —uj-1)| = 3 hiviro M0f)j41/2 + Ehj71/2 (T°f);-1/2
_11_2h§+1/2(H0f,)j+1/2 + Tlgh?_l/g(ﬂof')j—1/2
Ul = UN = 0
(40)

On an equally spaced mesh, the scheme reduces to the following finite difference compact scheme

1
— 7 [ + i1 — 2u5] =

% [T f) 12+ (TI0f) 1 /0] — 1_12h[(H0f,)j+1/2 — (M°f");_1/2] (41)

DN =

which is fourth order accurate with a consistency error

1
Ep(u) = %h4u(6) + O(h®) (42)

Note that replacing (Hof)j+1/2, (resp. (Hof')j+1/2) by a fourth order (resp. third order) formula,
does not modify the fourth order of the scheme. Let us state now the formulation of the box-
scheme (38) as a finite element scheme for uy(z) = >_; u;p;(z) combined with a reconstruction

formula for pp(z) = Ej pjei(x).

Proposition 3.2 (a) The boz-scheme (38) is equivalent to the twofold finite element scheme:
(i) find up(x) € P}y such that

(th,z; vh,) = (I1° f;0p) + %(%(H[)f');vh,x)o,l (43)

N
where 0p(x) = ZJ:Q hifl/zﬂKrw(‘r)'
(ii) reconstruct py, € Pl by

Ph\K;_1s (z) = (HO ph)|j—1/2 +Ph,z\Kj,1/2($ - %‘71/2) (44)

with (Hoph)\j—l/Q = uhax|Kj—1/2 — 1—12h§71/2(H0f1)j_1/2 and phax|Kj—1/2 = —(Hof,)j_l/Q.
(b) The following superconvergence estimates between the P! interpolants @, p of u,p and uy,
ph, hold

(2) % — uplo,r < Ch*uls,r (45)

(44) 1% — %y lo.r < Ch*uls s (46)

Note that, due to Lemma 2.1, (i) is a third order estimate in [p — pplo 1.
Proof: The box-scheme (38) is simply: find (up,pn) € Pcl,0 x P! solution of

C

(pha+f; 0n) =0 Vo, € P° (a) 47)
(ph — Unz + 550nf" 3 @) =0 Vg, eP® (b

8



It could be noticed in (47) that the constitutive law p = u, is no longer verified in the mean at
the discrete level, contrary to (20). This scheme is equivalent to the identities:

1
Phax = _Hof ) Uh,x = Hoph + Eéhnofl (48)

Selecting ¢, = vp,, in (47;) gives (43). The reconstruction formula (44) just follows from (47).
Let us check now (46). As in (28), we decompose
05 —Tpy J5;, =05 —1p ; I°5 —°py) + ([0 p — 110y, 5 1055 — T1% ) (49)

e

) (I7)

We have
1 N
(II) = (I°p—wup,+ E&zﬂof' ; I05 — 119 pp)
. 1 .
= (g — ung + E&zﬂof' ; 0% — % pp)

Using the relation

N
1 -
E<5h(110f') =’p -1 +EP |, EP= ZEffl/zllKj_l/z(m) (50)
j=2
we obtain finally (I)+ (IT) = (EP(z),1I° p —TI° p), from which we deduce easily (46). For (45),
we start from the relations @, = II%, up, = %y, + 56, (I1°f") = 1% — (I1% — 11%p;,) + EP.
Therefore iy, — up, = 1% — %)y, — EP, giving |ty — upzlor < Ch4|u|571, and finally (45) by
the Poincaré inequality. |

4 A first order box-scheme for the stationary convection-diffusion
equation

4.1 Presentation of the scheme

We recall in this section the extension of Keller’s scheme to the standard stationary convection-
diffusion equation with source term f proposed by Courbet in [9]. Although this scheme is
only first order accurate in the finite difference sense, its interest lies in its design, which can
be extended to more complex situations. Moreover, we prove that it is equivalent to a non-
standard SUPG scheme justiciable of an error estimate in a suitable energy norm of order h3/2,
when € = O(h). Let us consider the convection-diffusion problem

{cux—sum:f z€l0,1] , ceR |, >0

w(0) =u (1) =0 (51)

We rewrite (51) in mixed form as

p+eu, =0 (Ip) (52)



f(u) = cu is the convective flux and p = —eu, the diffusive flux. As in Sect.3, the exact solution
(u,p = —euy) verifies the discrete equations obtained by averaging (52), ,(52), onto the boxes
Kj 12

¢ (ulzj) —u(zj1)) +p(z;) —p(zj-1) =hj 1/ (I i1z

hj—1jo (I°p) 12 + € (u(25) —u(zj-1)) =0 (53)

u(ry) =u(zrny)=0

The box-scheme is now defined from (53), by approximating (II° p)|;_; /2 in function of p;. The
class of schemes we consider a priori is given by the upwind approximation of II% in the form

1
(Hop)jq/z =3 [pj—1+pj]l = Dyj_1/2pj — i1l (54)

D, j_1/2 is an upwinding coefficient in the boxes K;_;/, whose meaning will appear later. As
for the standard box-scheme (11), they are in (53) 2N unknowns u; , p; and 2N equations. The
resulting scheme writes

(I’[Uj —uj 1]+ [pj —pj 1] = hj_12(1°F) ;19
5 (pj+pj1) — Dy i_1/2 (pj —pj—1) + (uj —uj1) =0 (55)
up =uy =0

e
hj_1/2
With the notation Awu;_y/ = (uj —uj-1)/hj_1/2 the resolution of (55) with respect to p; 1, p;
yields

{ pi-1= = [e=c(3 = Dpjoyjz) hj—ye] Dujorja+1=3 + Dyjoapplhiors (0f)jmre 5
pi=—le+c(5+ Dyjry2) hjrjp] Dujrpp+ 1[5+ Dyjpolhjrjo (0f) 1/

Identifying the two values of p; given by (56) in K;_; /5, Kj 1/ gives the scheme in (u;) only

c 1
op; Wi+l = 1) = - [(5 +chjyiyeDpji1ye) Aujire — (E+chj 12Dy 172) Aujfl/Z]
i i

= hi] [(% - Dp,j+1/2> hjviyo (T0f) 4172 + (% +Dp,j1/2> hj_1/2 (Hof)j1/2]
The scheme can be rewritten in function of Aw;_y/5, Auj i/, only as
- {[8 + (Dpjr1/2 — 1/2) chjriplAujiyn — [+ (Dpj12 +1/2)ch; 1 2]A Uj71/2}(57)
= (% - Dp,j+1/2> hjsrje M0 f)ja1p2 + (% + Dp,j1/2> i1y (M0 f); 12

In addition, multiplying (55)2 by ¢ and replacing ¢ (u; — u;_1) by its value deduced from (55);

gives the following scheme in (p;), consistent with the equation cp —ep, = —¢ f
I " D (pj =pj-1) _ o
3 c(pj +pj-1) — (C j—1/2 Ppj-1/2 + 8) h71/2 = —¢( f)j71/2 (58)
j—

The quantity ch;_y /D) j_1/2+¢€ appears as the total diffusion of the scheme and ch;_1 /2D, j_1/2
as an artificial diffusion coeflicient. We suppose from now on that c¢D,, ;_;/5 > 0 and we give a
sufficient condition on the coefficients D), ;_; /5 in order for the box-scheme to verify a maximum

10



principle for u;, p;. More precisely, we consider scheme (55) with f = 0 and boundary conditions
u; = u(0) = a, uy = u(l) = B. The exact solution u(z), p(r) = uz(z) exhibits an exponential
boundary layer given by (2). A traditional requirement for schemes approximating this problem
is to verify the maximum principle. Here, it consists simply in the monotonicity of the two
sequences uj, p;j. Let us define the cell-Peclet number Pe;_;, € [0, 400 for ¢ € R, € > 0 by

|C|hj—1/2
Pejyjp = ——— (59)
Proposition 4.1 (i) Suppose u;, p; are solution of the boz-scheme (55) with f = 0 and nonho-
mogeneous Dirichlet boundary conditions u1 = «, uy = . A necessary and sufficient condition

for the p; to have same sign is that for any j = 2,..,N

C
e+ cDyj—1/2hj—1/2 2 %hj—lﬂ (60)

In that case, uj, p;j are monotone sequences. The value of Dy ;_1/o for which |Dp,j_1/2| 18
minimum in (60) is
1

1
Dot/ = & sgu(e) max (o 1- Pej_m) (61)

where sgn(c) is the sign function.
(i3) If hj = h and D, ;_1/5 = Dy, the consistency error in the finite difference sense of scheme
(57) with respect to the equation cuy, — €Uz, = f is

Ey(z) = —he Dptgyy + O (h*) (62)
(11i) The consistency error of scheme (58) with respect to cp — epy = —¢f, is
Ey (z) = —heDyppg + O(hZ) (63)

Proof: (i) Suppose f = 0. Due to (55);, the sequence u; is monotone if and only if so is p; .
Taking f = 0 in (58), and under the hypothesis cD,, ;_;/, > 0, all the p; have same sign if and
only if (60) is true. Equation (57) ensures now that the coefficients before Au; 1/, Au;_y/9
have the same sign. Therefore (u;) is monotone under condition (60), and so is (p;). The
minimum value of |D,, ;_; ;| is clearly obtained with (61).

(i1) We suppose now h;_1/9 = h, Dy, j_1/5 = Dp, 2 < j < N. This allows to perform a standard
finite difference analysis. Scheme (57) rewrites in the form of a three points compact scheme for
the convection-diffusion equation

1

1
a1Uj 1+ apuj + oy Ui = (5 - Dp)(HOf)j+1/2 + (5 + Dp)(HOf)jflﬂ (64)

The coefficients oy, ag, a1 are

w5 Goen)] smm g Gorem) soamf [5G oen)] @

The consistency error is, [27]

Eh ’U,(IL']) = (Lh — Rh o L) U(Q}]) (66)
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where L, and Ry, are the finite difference operators defined by L, ulj = a1 uj1+tog ujtag uj,

Ry fi; = (3 - Dy)(I°f)jy1/2 + (5 + Dp)(nof)j—l/Q- If pp(€) = a_1e7 + g + ane®, rp,(€) =
(3 — Dp)(e ® —1)/(i0) + (3 + Dp)(1 — e ) /(i6) (0 = £h) are the symbols of the operators Ly,
Ry, and p(&) = ict + €2 is the symbol of the convection-diffusion operator Lu(z) = cuy, — gy,

then we find that the symbol of the consistency error Ej,(z) is ey, (§) = pp (&) — (&) p (£), with
en (€) =ieh&® D, + O (h?) (67)

which is (62).
(17i) We proceed in the same way. The operator L is Lp = c¢p — ep, with symbol p(§) =
¢ — €i§. The symbol of the finite difference operator Lyp|; in the rhs. of (58) is (0 = £h),
pu(&) = c(1+e7?/2) — (ecDp +¢/h)(1 — e~ ). The symbol of the interpolation operator acting
on F = —¢f is rp(€) = 3(1—e™"). The symbol of the consistency error Ej,(z) = (Lj, — Ry oL)p;
is therefore

en(€) = —ihct Dy + O(h?) (68)

which gives (63). [ |

Remark: 1t results from Prop 4.1 that if D), # 0, the box-scheme is only first order accurate in
the finite-difference sense with respect to the two equations cu, — eu,, = f and cp — ep, = —¢f.
If D, =0, it is second order accurate.

4.2 Comparison with the SUPG method

In this section, we establish a link between the box-scheme (53) and the standard SUPG method
of T.J.R. Hughes et al,[3, 18], C. Johnson et al. [21, 19, 26, 20] for the convection-diffusion
equation. In its simpler form, this method reads : find uy € Pcl,o such that for any v, € Pcl,0

(cung ; vh+0cupg) +€Ung 3 Vng) = (f; vn+ dcup ) (69)

where § = O(h) is an upwind parameter. The standard error estimate is usually derived for the
stationary convection-diffusion equation with an absorption term ou, with o > 0, that is

{ OU + Cly — EUgy = f (70)

u(0) =u(l) =0

Recall that the equation without absorption term cti; — etz = g is transformed into an equation
with an absorption term ou by the change of unknown u(z) = e~ ?%4(x) with oc > 0 and |o]|
sufficiently small. The SUPG method for (70) consists simply in: find u; € Pcl,0 such that for

any vp, € PC{0
(oun + cung 5 vh +0cvpg) +€(Une 5 vhe) = (f 5 vn+0cupg) (71)
The energy norm associated with (71) is
lull® = olul§ ; + dleus[ ; + elualg ; (72)

Note that [|u| controls the L? norm |ulo s uniformly when e — 0, only when o > 0. The main
interest of the SUPG method is that one get, by choosing 6 = O(h), an error estimate in the

12



energy norm in the form |Ju — uy|] < Ch*/? uniformly with respect to € = O(h). This represents
a gain of h'/2 in comparison with the standard Galerkin method. In two dimensions, one can
replace the diffusion € by &,, = max(e, Ch%/?), in order to keep an O(h*/?) error estimate, still
uniformly when € — 0 even in the crosswind direction, [20, 32].

Here, we are going to prove that the box-scheme (55) is nothing but a variant of the SUPG
method for the unknown wu, coupled with a reconstruction formula of the flux p. Note that this
last property is unusual in the classical SUPG finite element method. We define the upwinding
function d, ()2, which is constant in each box K j—1/2, by

N

dp (z) = Z Dy i—1y2hj—1/2 Mk j_1/2 () (73)
=

We obtain the following SUPG form of the box-scheme (55):

Proposition 4.2 The boz-scheme scheme (55) is equivalent to
(i) the modified SUPG method for uy, : find up, € PC{0 such that for vy, € Pcl,o-

(Cuh,x 3 Up Tt dp Uh,x) +e (uh,a: ; Uh,a:) = (HO fion+ dp Uh,x) (74)

(ii) the local reconstruction formula in py

with
(I PRIy = —(Etcdpj1/2) Unali; ) + dpj1/2 (I £)j-1/2 (76)
PholK;_yjn = (I° f)j-1j2 — CUhz|K;_y (77)

Proof: The box-scheme (55) can be rewritten as the mixed Petrov-Galerkin method in
(uh,ph) S Pcl,O X Pcl

{ (cung 5 On) + (Pha s On) = (f 5 On) Vo, € PY (78)
(I°pp —dypha s Gn) +€(ung 3 Gn) =0 Vg, € PP
Taking v, € PCI,O , we deduce from (782) with G, = v
0 = (Hoph - dpph,a: ; Uh,x) +5(Uh,x ; Uh,a:)
= _(ph,a: ; I’ Uh) - (dpph,x ; Uh,x) +e (uh,a: ; Uh,a:)

= (Cuh,a: ; I’ vh) - (f ; I’ vh) - (dpph,a: ; Uh,x) +5(uh,x ; Uh,a:)
= (cupg; vn) — T F 5 vp) = (dpphg s Vha) + € Ung 5 Vng) (79)

Taking now oy, = dy vy, , € P as test function in (78;), we get (d,, Phy 5 Vhg) = (I° f 5 d, Vha) —
(ctpg 5 dpvng). Replacing this value in (79) yields

(Cuh,w ; Up t+ dp vh,w) +e€ ('Ufh,a: ; Uh,:z:) = (HO f ; Up + dp Uh,:z:) (80)

%d,(z) should be denoted d, (), in order to indicate the mesh dependency.
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This is the standard P' streamline-upwind Petrov-Galerkin method with source term II° f and
upwinding function dp(z). The flux p;, is now given by the local affine formula in each cell
Phlj—1/2 = (Hoph)j,l/g + Phglj—1/2(T — Tj_1/2). Formulas (76, 77) result immediately from
(78). [ |

Taking advantage of this form, we can follow the same sketch of proof as for the one of (71),
to prove an error estimate for the box-scheme (78) for the convection-diffusion equation with
an absorption term ou. More precisely, we restrict ourselves for simplicity to the adimensional
form of the model problem (70) when ¢ > 0, [21, 32]

U+ Uy — EUgy = [ z€|0,1[ , >0 (81)
uw(0)=u(l)=0
The box-scheme is a discretization of the mixed form
U+ Uz +pg = f
p+euz; =0 (82)
uw(0) =u(l)=0
It reads n
Ui + Ui_
hjo1jo =220+ [uj — wja] + [pj — pj—1] = hyo12(T10f) -1/
3 (P +pi1) = Dpjo1pp (b —pi1) = =555 (w5 —uj 1) (83)

ulzuN:()

The cell-Peclet number is Pe;_y /5 = hj_1/2/2¢ > Cy,h/2¢. The upwinding function is given by

N
1 1
dp (z) = ]22 Dp,j—1/2 hj—1/2 ]lKj—l/Z (z), Dp,j—1/2 = B max(0,1 — P6j71/2) (84)
As in Prop. 4.2, (83) is equivalent to:
(i) the SUPG scheme for u, € Pcl,0
(Houh + Up gy U + dpvp ) F € (Ung 5 Vhg) = (H0 [ vp +dpop ) Yoy, € Pcl,o (85)
(i3) the local reconstruction formula for p, € P! in function of uy,
Prj—1/2 = (I° pp)jo1/2 + Phalj—1/2(2 — Tj_1/2) (86)
with
(0 pn)jj—vr/2 = = (& + dyj1/2) Unalj1/2 + dp /2 10 (f = un)jj1y (87)
and
Phalj—1/2 = (f = un)j—1/2 — Un)j—1/2 (88)

The numerical analysis follows now the lines of classical works on SUPG methods, [3, 18, 19, 20,
21, 26]. Defining for (u,v) € (H{)? the mesh-dependent bilinear form By, and linear from L, by

By(u,v) = (Pu+ug ;5 v +dyvy) +(ug 5 vo) ,  La(v) = (I°f;0 + dpvy) (89)
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the scheme rewrites
(i) find uy, € Pclyo solution of

Bp(up,vp) = Lp(vp) — Yop € Py (90)
(ii) reconstruct p, € P! by (86-88).
Defining the associated mesh-dependent norm | . ||, by

Jull = M°ul§ ; + (e + dp)ua, ua)o,r (91)

the stability estimate for the form B reads

Lemma 4.1 For u € H&, there exists 0 < Cy < 1 such that

B (u,u) > Collulli (92)
Proof: For any u € H}, we have
B (u,u) = [Iulf ; + (e + dp)ug; ug) + (I1u; dyuy) (93)
We have
N
(H0U3 dpug)or = Z(HOW dp“w)O,KFuz (94)
71=2
al 1
< S himapluliy L, + mwpuw%,&_l/? (95)
j=2 J— /2
1
< Bl + S ldpusi ) (96)
where we have used dp‘Kj—1/2 =hj_1/2Dpj 12 < %hj,l/g. Therefore
7
B(u,u) > (1= h)|Iulg , + (e + g )i ) 2 Collullz (97)
|

The following estimates hold

Proposition 4.3 Suppose that uy, € L(I), where u is the solution of (1), then the solution
(up,pn) € Pclyo x Pl of the boz-scheme (83) verifies the a priori error estimates, (C is a generic
constant independent of h),

(i) Jlu = upllp < Chmax(e'?; hY?)|ugy| oo s (98)
(@) 0%(p = pa)lo,r < Chmax(e; h)|ts|oo 1 (99)
(i) |1°(pr — pro)los < ChY2max(e?; hY?) | uge|oor (100)
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Proof: Let us begin by stating the standard interpolate estimate in the || . ||, norm. If 4 € Pcl,0
is the standard interpolate of u € H{(I), we have the error estimate

lu —allz = T(uw—a)[5r + (e + dp)(u = @)s; (u— D)o
u—alg ; + (e +h/2)[u—alf
Ch4|uxx|§o,l + (e + h/2)h2|uxx|c2>o,l

Ch? max(e, h)Ium|go,1

IN NN

which gives,
bu—ally < Chmax(e"/2,hY2) uglo, (101)

The error estimate follows now a classical sketch. We denote by EP(x), E*(z) the two piecewise
constant quadrature error functions defined for u, p = —eu, by

(Hop)j—1/2 = %(P(fﬁj) +P($j71) - Dp,j_1/2(P($j) - P(«’ijl)) - Eé)_l/g (102)

()12 = 5 (ulay) + ulay 1)) — By (103)

We check easily that, if uy, € L°°(I), the two following estimates hold, where C' is a generic
constant independent of A

|EP |oo,1 < Chelugaoo,1 B oo, < Ch*Jtuzoo1 (104)

Moreover, we check easily that for any vy, € Pc{o,

By (i, vn) = Lp(vn) + Mp(vn) (105)
where the consistency error is
My (vp) = (E*; 11, + dyvne) + (BP; vp.2) (106)
Using Lemma (4.1), we have
Colla — unlli < B (t — un; @ — up) (107)

Now, denoting @ — u;, = vy, we have
By(t — up; e — up) = Bp(t — up,vn) = Lp(vp) + Mp(vn) — Lu(vp) = Mp(vp) (108)
Therefore, we deduce from (106) that
Colla — unlliy < |(E*; 1% + dpong)| + [(EP; vn0))| (109)

We observe now that, for any v € H}(I) the two following estimates hold

0] < Jlolla Jvelor <

el (110

16



This allows to estimate |Mp,(vy,)| by

h
|Mp(vn)] < |E% o0, (%0, + 5 lvnelo,r) + 1B |oo,1vnlor
h Che
2
< Ch™{1+ CWHUMO@H”%”M + WWM%H”%”M
< Chmax(h'?,e?) ugyoo rllonlln
Therefore

I — unlln < Chmax(h'/?, €"/2) ugy|oo,r (111)

Estimate (98) results now from (101) and (111).
For (ii), we first check that [II%p — II%pplo.; < |p — II%plo;. Then, using formula (86) and
f=u+ uy — euyy, we have

p—1%y; = (e+dp)upy — dpII°(f — up) — euy
= —(e+dp)(ug — upg) — dp(Tuy — ug) — dpl1%(u — up) + dpell® (ugy)

Therefore
ITp—T1%p 0.1 < Chmax(e, h) e |so.s+Ch2[tsg|so.r+Ch? max(e'/2, BY?)|ugs| so 1+ Che U] so.r

and finally (99).
For (iii), we have

Hopw - Hoph,x = Hopm — Phg = Hopm - (Ho(f - uh) - uh,a:) = -11° (u + Uy — up — uh,a:)

Therefore, using (110)

My — Mphaloy < TO(w —up)os + [ug — unulos
1
< U—1Uu + U —Uu
< Ml b e el
1
< o@ h 12 p1/2
> ( + max(a, CTmh)1/2) ma‘X(E ; )|ua:a:|oo,1
which gives (100). [ |

5 A fourth order box-scheme for the stationary convection-diffusion
equation
5.1 Presentation of the scheme

Still starting from system (53), we use as in Sect. 3.2 the Euler-MacLaurin quadrature formula
for approximating (IT° P)|j—1/2 on the box K;_;/5. Recall that it reads

1
hj71/2(px($j) _pa:(xj—l)) - Eﬁ')_l/g (112)

1
Hopj71/2 = 5(17(3{7') +p(zj-1)) — P
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with the error term, (see (33))

Byh?

1/2
Ef,l/g # (fg 1/2)s Tj—1 < §j1/2 < T (113)
Using the two relations p,(z) = f(z) — cuy(z) and u, = —1p(z), we get
1 1 chj_yy
W1 = 5pe) +plaj1) - =L (p(a)) ~ plaj1)
1

- ﬁhj—l/Z(f(xj) — f(@j-1)) — E;')_l/Q
Replacing now in (53) Hopj,l /2 by the approximation

1 Ch] Chj-1/2 1

1
Hopj—1/2 ~ —(PJ +pj- 1) — 12 ¢ (Pj _ijl) - Ehj—1/2(f($j) - f(xjfl)) (114)

allows to introduce the box-scheme

[ — u]h 1]+ [p] Pj— 1] = g; 1/2(H0f)j—1/2
c c €
(5 - 5L+ 3+ 5—L)pj1+ T (uj —uj1) = %h?—1/2(nof,)jfl/2 (115)
ur =un =0

If we define the coefficient D, ; 1/, as

1 chi 19 1
Dyjorjs = 35— = gsgu()Pej 1o (116)

with definition of Pe;_; /5 in (59), then the resolution in function of (p; 1,p;) yields

i . ;
Pj-1 = —|e=c¢ <§ - Dp,j—1/2> hj—1/2 AUj—l/?
1- D HU 0 l
- [5 - p,j—1/2] hj—1/2( f)j—1/2 h] 1/2( f))j—1/2
i . ;
pji = - €+0<§+Dp,j1/2> hjrp2| Aujoryz

1 1
+ [5 + Dy 12l hj—1/2 (Hof)j—1/2 + Eh§71/2(ﬂof,))j—1/2

Identifying the two values of p; in Kj; 155, Kj;12 gives the scheme in
Aujiije = (ujt1 — uj)/hj+1/27 Auj 175 = (uj — Ujfl)/hjfl/Z-

- {[8 + (Dpjt1/2 — 1/2) chjpipp]Aujirje — [e+ (Dpj—1/2 +1/2)chj_q2]A Uj—1/2}
1 1
= (5 + Dp,j—1/2> hj_1/2 (Hof)j—l/Z + (5 - Dp,j+1/2> hjy1/2 (Hof)j+1/2

1
T h] 1/2( 0f,)j—l/Q - ﬁh§+1/2(nof’)j+1/2
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The most interesting feature of scheme (115), which is experimentally known for finite difference
compact schemes, [6, 31], is that it is non oscillating, even when ¢ — 0. For, consider the
homogeneous case f = 0. Condition (60) reads here with (116)

1Ch’y LN le]

€+ — 12 R =5 h] 1/2 (117)
.. . . . h;_ ..
The minimum of the left-hand side is obtained for e = M;Tg/z giving a value of %|C|hj_1 /2 >

%hj,l /2- Therefore (117) is verified and the scheme is non-oscillating in the sense of Prop. 4.1
Finally, on an equally spaced mesh, the scheme in u;, consistent with equation cu; — cuze = f

reads (D, = 1—12%)
- %{[s—ch(%—%%)]w e+ ch(~ +%%)1%} (118)
= (Gt DY), 1+ (5 1 )T D) e + g h () 1o = o h2( )
The scheme in p;, consistent with ¢p —ep, = —¢f is
by + 1) = (ot + Dy —pymr) = =)+ Oy (119)

Performing an analysis similar to (66), we check easily that each of the schemes (118),(119) is
fourth order accurate.

5.2 Comparison with the SUPG method

Similarly to the box-scheme in Sect. 4.1, we can recast the box-scheme (115) in the form of a
non-standard SUPG scheme in the unknown wuy, € Pc1,07 coupled to a local reconstruction formula
for the flux p, € Pl. In addition, we obtain superconvergence results of order 4, between the
standard interpolates (@, p) € P} 0 X P} of the solution, and the approximation (up,py). Let us
define the piecewise constant functlon

N
2) =Y Wi, (120)
j=2

The following result holds

Proposition 5.1 The boz-scheme (115) is equivalent to:
(i) the modified SUPG method for uy : find uy, € P} c0 such that for any v, € P

(cung ; Uh‘i‘ﬁfshvhaz)""g(uhx; Opg) =10 f 5 vy

.. - . 1
(1) the local reconstruction formula in py, € P,

< L0 g
+ 1265hvh,a:) + 12(H [l 0pvne) (121)

PhlK;_y)y = (I pp)j_1/2 + Pha|K; (T — Tjo1/2) (122)
with
0 02}7? 1/2
(I pp)j—1/2 = —(€+T6)Uh,a:|l(j_l/2 h] 1/2[ (I f)japo + (0 fN)10]  (123)
Phlk;_y,, = (I f)j71/2 — Clhg|K;_, ), (124)
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Proof: Follows the same lines as Prop. 4.2. ]
We conclude by some error estimates for the convection-diffusion problem (81), whose mixed

form is
U+ Uy +py = f
p+eug, =0 (125)
uw(0)=u(l)=0

The Euler-MacLaurin formula (31) yields for the two averages (I1%u) j—1/2 (I1%) i—/1/2

hi_
{ (I1%); 12 = 5(ulzy) + ulzj—1)) — 52 (ua(zy) = uplzj1)) — B, (126)
hi_
() ;—1/2 = 5(p(x)) + p(zj-1)) — =2 (po(x)) — pel(j_1)) — EY |y
where the error terms are
u B B
j—1/2 = 4!4hy 1/2U(4) (5?—1/2) ) Ef_l/g 4h] 1/21’( )(5]1'—1/2) (127)

Averaging (125)1, (125)2 on each box K;_;/, yields

{ - 1/2(H w)j_y2 + (w(eg) — ulzj1)) + (p(es) = p(xj1) = hj1 (0 f);_1/2 (128)
h;j_ 1/2(1—I p)] 1/2 = — (u(a:]) —u(zj-1))

replacing (IT%); /25 (%), 1 /2 by the fourth order approximation deduced from (126) gives
the box-scheme

1 W1y pj =it | wj = ue

E(u‘j Fuj-) + (14 ]128/ ) Jhel;z * Jh-fl‘/72 N (HOf)j_1/2

: s i 2 31/2 . W (129)
Jj— J— J — Yj—1 Jj— 0/ gt

Z(p. ) — g — II .

5 (Pj +pj-1) = =5 i —pi1) + e+ —57) Ty 13 (f)j-1/2

Still denoting up, € P, o, pn € P, defined by (19), and By (z) = 32, (k3 ,/12e)1k; (), (129)
is proved to be equivalent to:
(i) find uy, € Pcl,o solution of

(%, + whz; ———{vn + Bron :1:}) (e(1 + Br)una; vhe) (130)

1
1+ Bn

= (M°f; ——{vn + Brvng}) + 12 (5h(H0f');vh,z) Yoy, € P,

1+ 5
(ii) reconstruct p, € P! by the local formula

Phik; s = (T0Pn)j—172 + Phoolk;_y (@ = 2j_1)2) (131)
where py 4k, ) (T1%p);_1/2 are deduced from (129)

1

Phalkioe = T g [TO(f — up) — upgl (132)

1
(Hoph)j—1/2 = Bupne — (1 + B)une + _5h(H0f,)j—1/2 (133)

12
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Now, the box-scheme (129) can be rewritten
Bp(un,vn) = Lp(vn) (134)

where the bilinear form By, (uy,vp,) and the linear form Ly, (vy,) are respectiveley given by the left
hand side and right hand side in (130). The energy norm is defined, for u € H}, by

Bh
1+ Bp

For any u € Pcl,07 we can check that By, (u,u) = |lul|?. We state finally the two following a priori
error estimates between uy, p;, and the interpolants 4, p of u, p, whose proof follows the lines of
Prop.4.3

fully = (1 T T00) + (0 ) + i ) (135)

Proposition 5.2 If the solution u of (1) is sufficiently regular, then there exists C' > 0, inde-
pendent of h such that

(@) ME —unlln < CRM([ul oo, + [u®]oo,1) (136)

(i) |I% — I°plos < Ch*(ju® o s + [uP]0or) (137)

6 Conclusion

In this paper, we derive two box-schemes for the stationary convection-diffusion equation fol-
lowing principles introduced in [22, 9, 10, 11, 12, 13]. The design introduced is basically of
finite volume type, but results finally in a mixed Petrov-Galerkin scheme with an access by a
local formula to the diffusive flux. The main intention of this paper is to fill a gap, at least
for monodimensional problems, between the standard SUPG method, the mixed finite element
method and the high order compact finite difference schemes. The extension to multidimensions
is in progress.

Acknowledgement: The author would like to thanks an anonymous referee for particularly
helpful remarks and comments.
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