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Abstract

In this paper, we introduce a box-scheme for time-dependent convection-diffusion equa-
tions, following principles previously introduced by B. Courbet in [7] for hyperbolic prob-
lems. This scheme belongs to the category of mixed finite-volume schemes. This means that
it works on irregular meshes (finite volume scheme) and computes simultaneously the prin-
cipal unknown and its gradient in all Peclet regimes, ranging from pure diffusion (Pe = 0) to
pure convection (Pe = +00). The present paper focuses mainly on the design of the scheme,
which is non standard, in the case of the 1D convection-diffusion equation. The version of
the scheme presented here is of first or second order depending on the local Peclet number.
We extend the 1D scheme afterwards in 2D by an ADI like technique. Several numerical
results on 1D and 2D test cases of interest for flow simulation in porous media are presented,
some of them exhibiting sharp contrasts in diffusion coefficients.
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1 Introduction

Originally introduced by H.B. Keller in [19] in the case of the heat equation, the design of
the so called “box-schemes” has received interest in the 80’s in different scientific communities
in numerical computations. In particular, in compressible aerodynamics, several authors have
adressed the extension of Keller’s scheme to the Euler or Navier-Stokes compressible equations,
[28, 29, 4, 6]. However, these works reached only a limited audience due to the success of the
finite volume method based on Approximate Riemann Solvers, which is today the building block
of most applied CFD softwares. There are several reasons for this. First, the basic design of box
schemes, which is at first similar to that of the finite volume method, relies actually on a non
straightforward compatibility between the degrees of freedom and the discrete equations [7, 5, 9].
This is considered as a serious shortcoming of box-schemes. Second, box schemes have no simple
time-explicit versions, which is seen as a prohibitive drawback for hyperbolic problems. Finally,
some box schemes need for specific flow patterns, like “sonic” points or rarefaction waves, a
special numerical tuning, [5]. Despite all these problems, box schemes are still of great interest,
because they are very accurate on poor meshes.
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The box scheme presented here is the generalization to time-dependent convection-diffusion
equations of a box scheme introduced in [7] for convection equations. In this paper, we em-
phasize both the construction of the scheme, and its application to linear convection-diffusion
equations. The resulting scheme performs very well in the case of diffusion coefficients with large
contrasts reaching values of as much as 10° or more. This is of interest e.g. for the numerical
simulation of transport phenomena in porous media.

As in the elliptic (or parabolic) case, [10, 13, 11] the basic principle is to introduce the dif-
fusive flux p = —cu, as an auxiliary variable (mixed method) and to take the average of the
conservation equation on one side, of the closure law of the diffusive flux on the other side on
the same “boxes”. In each of these averages, two upwind quadrature formulas are introduced,
each one being designed to cure the well-known oscillations sources present in the approxima-
tion of convective-diffusion equations. The first one is a “time-independent” upwinding for the
average of the diffusive flux p, over a “box” K. This aims to prevent the spatial exponen-
tial instability at a stationary state u(z), solution of cu, — eugz, = 0, especially in boundary
layers. This upwinding has been studied in the 1D stationary case in [11]. The second one
is an upwind quadrature formula for the average g (t) of u(x,t) over the box K. Its role is
to give some control on the stable dispersive oscillations present in a centered discretization of
the time-dependent convection-diffusion equation. Although the box scheme we present here is
only first order accurate at high Peclet number, we stress that it computes simultaneously the
principal unknown and its gradient (or the diffusive flux), which corresponds to a higher order
method in the principal unknown. For higher order versions, we refer to [12].

Let us mention finally that the box scheme presented here has strong links with other numerical
methods, in particular :

e High order finite difference compact schemes [30, 26, 20, 24].
e Mixed finite element and SUPG methods [9, 10, 13, 11].

The outline of the paper is as follows: after giving the notation in Sect.2, we describe in
Sect.3d the design of the box-scheme for the 1D convection-diffusion equation, as well as some of
its properties : stability, accuracy, numerical dissipation and dispersion. Afterwards, we explain
in Sect.4 how to extend this scheme to the 2D case by an ADI like algorithm. Finally, we
present in Sect.5 some numerical results for the 1D and 2D time-dependent convection-diffusion
equation. This work has been announced in [14].

2 Notation

We consider the linear time-dependent convection-diffusion equation with constant coefficients
in the segment I =]0, 1[. Recall that this equation is

ug + cuy — gy = f(x,t) zel, t>0
(1) u(z,0) = up(z)
u (0,t) =0, u(1l,t) =0

The velocity is ¢ € R and the diffusion coefficient is € > 0. We will consider the purely convective
case € = 0 as the limiting case € — 0. Therefore, we shall still use a scheme designed for
convection-diffusion equation for a purely convection equation. We stress that this is performed



only at the level of the design of the scheme and not as a artificial diffusion method. The
notation for the discretization of the 1D equation is as follows: let the interval I be discretized
by a finite element, possibly irregular mesh, with nodes z; =0 < 22 < ... < xy = 1. We call
Kj_ 15 = [1j-1, 75] a box, for 2 < j < N. The size of the box K;_y/5 is hj_1/9 = zj — 1.
We make the quasi-uniformity hypothesis Ch < h; 1/ < h, where C' > 0 is a constant. We let
hj = % (hj—1/2 +hjp1/2) and hy = h3/a/2, hy = hy_y/2/2. The barycenter of the box K;_;/; is
Tj_1/2 = %(x] +xj_1). The coefficents «;, B;, @;, Bj are defined by
(2) {aj:hj—l/Q/hj , gj:1/aj , 2<j3<N
Bi=hjp/hy , B;j=1/8 , 1<j<N-1

For any quantity Z;', we note the incremental unknown
1
(3) 827 = (23T = Z7) [k

where k = At is the time-step. Dimensionless cell numbers used in the sequel are

( k
Aj_1jp=c¢ h1s (Cell Courant number, A;_; /5 € R),
k
(4) Hi-1/2 =€ 33 / (Cell diffusive number, y1;_; /5 > 0)
j—1/2
j—1/2
\ Pe; 15 = || ]25/ (Cell Peclet number, Pe;_ /5 > 0)

The discrete unknowns are denoted by v}, pi and are respectively approximations of the pricipal
unknown u(z;,t") and p(zj,t") = —cug(z;,t"). The exact average operator onto the functions
constant in each box Kj;_; /5 is denoted by 110,

1 T
(5) (Hof)|K]-71/2 = hj—1/2/z]-1 f(z)dz, fe L)

For any function f(z), the notation f (z) will be used in the sequel for some approximation
of TI f which depends on the context. The design of such approximations is the heart of the
paper, as will become clear in Sect.3.

3 A upwind box-scheme for the time-dependent convection-
diffusion equation

3.1 Semi-discrete spatial box-scheme

We extend the design principles introduced by B. Courbet in [7], from the case of the convection
equation u; + cu; = 0 to the convection-diffusion problem

g + Cuy — gy = f(z,1t)
(6) u(0,t) =u(l,t) =0
u(z,0) = up (z)



We write (6) in mixed form by introducing the diffusive flux p = —eu, as an auxiliary unknown

ug + cug +py = f(z,t) >0

(7) P = —cuy
u(z,0) =ug(z) ; p(z,0) = —cupy,
uw(0,) =u(l,t) =0

Integrating (7)1 , (7)2 over the box K;_;/, yields the spatial semi-discrete relations, which
hold at the level of the exact solution,

o hj1po 3 0u;_1yo () +clu(zy, t) —u(zj_1,t)] (a)
+p (zj, t) = plej 1, £)] = hj_1o (110 f)j1/2 ()

(8) o hj_1o(Tp)jcrye (t) = —e[u(zj, t) —u(zj_1, t)] (D)
e u(zi,t)=u(zn,t)=0 (¢
o u;(0) = uo(z)

Let us introduce now the semi-discrete unknowns u; (t), p; (t), approximating u(z;,t), p(z;,t).
The semi-discrete box-scheme we consider is

%%‘4/2 (t) +cluj (t) —uj1 ()]/hj—1/2 +[pj (t) —pj1 (®)]/hj_1/2 = fi—1/2(t) (a)
9) Pj—172 (t) = —€luj (t) —uj—1 (O)]/hj_1/2 (D)

ur (t) =un () =0 (c

ui(0) = uo(z;) (d)

where %;_y /5 (1), pj_1/2 (t), are respectively approximations of (I1° up)j—1/2 (t) and of (I1° Ph)j—1/2 ().
In addition, f; 1/2 (t) = (TI° f);_1/2 (t). Let us stress that the cornerstone of box-schemes con-
sists mainly into the definition of the two approximations of (I1° up)j—1/2 (t) and (I1° Ph)j—1/2 (t)-

We restrict ourselves in this paper to two-point quadrature formulas,

(10) (I up)j 1/ () = Quluy(t), uj—1(t)

(11) (I pn)j-172 () = Qp(p;(t), pj-1(1))

The closure quadrature formula (11) for the diffusive flux has been studied in [11] in the context
of the time-independent convection-diffusion equation cuy — euzy = f. We keep for pj_y/9 (t) a
formula like (54) in [11] of the form

(12) Piciy ()= 5 [ps )+ i1 (6] = Dyjryo () [ps (6) = py 1 (0]

Dy, /2( ) is a piecewise constant function which aims to suppress any oscillating mode at
the stationary state. A necessary condition is that D, ; ,1/2c > 0, (see (61) in [11], [7]). For
f] 1/2 (t), we simply take the exact formula f] 12 (t) = (IT° f(¢ ))|j—1/2- For defining the ap-
proximate average value @;_y /5, we follow B. Courbet who introduced an upwind formula of the
form [7]

(13) Uj_1/2(t) = % [wj(t) +uj—1(t)] + Dy j1/2(t) [us(t) —uj-1(2)]



which plays a role only during the time-dependent phase. Let us consider now the time integra-

tion of (94). The basic time scheme is here the J-scheme, but higher order time schemes could

be used, without changing the basic principles of the design, [8, 12]. Integrating (9) in time by
1

nt _om
the ¥-scheme yields the first equation of the box-scheme (recall that 0a}_, , = w)

hj_ijp Ty = —(1=B)e(uh —uf ;) — 190( nt1 u;?_*f) — (1 =9) (P} =P 1)

(14) N .
0 (P~ p;%%+@;u201—ﬂyﬁ,u2+ﬂf]1ﬂ)

Denoting the total flux F}' = cu + p7/, (14) may be rewritten

(F] — ijl) — h— (C(SUJ + 6p,] — C5uj71 — 5p]71)
j—1/2

15 ou” = -
( ) j—1/2 hj71/2
+ Ri_i2(f)

where the interpolation box operator R7 /2( f) is defined by

(16) P = (=)} +97 0,

The incremental average 5@’7?_1 /2 is defined by the two point formula

1
+ Dy j1y2)0uf +

1
(17) (SU] 1/2 ( 5 —D u,j— 1/2)511/

2
Using this expression in (15) yields
(18) ﬁ?_l/Z(u,p) = R?_1/2(f)

where the box operator [,";_1 /2 is defined in each box K; /, by

E?—1/2(“’p) = [l TN 1/2 + Dz,j—1/2] ouj + {% —OAj1y2 — DZ,j—l/Q ouf_y
ity (FF = Fy) +9 5t (0p — 0p_y)

j—1/2

(19)

—1/2
We consider now the discrete form of the constitutive law (9;). We select the coefficient D) (%)

to be constant in time and in each box K;_;/, and denote it by D), ;_;/5. At each time step ¢"
we have the relation
(20) 1 5 Jra I.p. P = ( — U )

D) pj—1/2 | Pj 2 pj—1/2 | Pj-1 hi_1/s J j—1

Using the incremental variables du}, duj_;, dpf, 6pj_;, (20) can be rewritten as, (subtract (20)
at time n from (20) at time n + 1),

(21) k0

1 1
(5’[1,? — 5U?_1) + kv (5 — Dp,j—1/2> 5p] + kv ( + .Dp,] 1/2) 5p?_1

€ 1 1
= Tho (uf —uj) = (5 - Dp,j—1/2> pj - (5 +Dp,j—1/2> i1

j—1/2




Note that although the right-hand side term is zero in identity (21), we keep it for convenience in
subsequent computations. Dividing by h;_ /o, we get (119 = 8k/h?_1/2 in each box K;_1/.)

kv

- 1 e ko
Iyt (Bl — Su_)) + (5 - Dp,j1/2> Ty 0 (2 ER 1/2> R

Y 1 1 1
- ot i~ (5 Do) 1+ (34 P 7

Let us define the “box” operator C7 1/2(u p) by

Hji—1/2
(22)  Clipp) = Duyoagp(ou) —duiy) + = () )

1 1 1 i
T b {<5 - Dp’j_m) Pi (5 +Dp’j_1/2> pjl}

1 ko 1 Ko
+ <§_Dp,j—1/2>h_1/2 opy + ( + Dpj— 1/2> h; 0pj_1

Then, (21) may be rewritten

(23) Ci_1/o(u,p) =0

Using (18) and (23), we obtain that the 1D box scheme for the time-dependent convection-
diffusion equation reads

L =R (@)
24 {c] a(p) =0 (b)

Equations (24,) and (24;) are respectively a discretization of the conservation law and of the
constitutive law of the diffusive flux. We eliminate now at the discrete level the diffusive flux p¥
at the interface of the boxes K;_/, and K /5. Recall that h; = —(h] 12thjr172),2 <5 <N,
with hy = h3/3/2, hy = hy_y/2/2. Let us define the values Y” by

(25) yr = 19% (9> 0).
J

The following relations hold, (see (2))

— = k
(26) anjn =0 — 510) ;B an—l =0 — 510?—1

hj—1/2

Then, scheme (24) can be rewritten as the linear system in (Y], Y/ ) consisting of (27) and
(28)

(27) aJ'an - Bj—13/j711 = E?_1/2 - (% TN 12+ DZ,j—l/Q) 5“?
1 n n 1 n n
- (5 - 19)\]‘*1/2 B Du,j—l/?) 6uj—1 B h];l/z (FJ o Fj_l)



(% Dy ;- 1/2) aJY + (%“L p,J—1/2) ijl Yﬂl
,uITl
j—

(28) & =0y =B = wy) = i { (5= Dpy12) )+ (3 + Dyp2) P}

—19%71/2(5“‘7 - 5Uj_1)
Solving the 2x2 system (27), (28) with unknowns (Y*, Y] ;) yields in box K;

v =ag{ = |00+ (5 + Dpyoap) (349N 10+ D2y )| 0
+ [79,“]'—1/2 - (% + Dy, ;- 1/2) (1 ONj_1y2 — Dy 5 1/2‘)] ouy_y

(29) —% i1z + Ac1ye (5 + Dyjory) ] wf —ulfy] - R Vi
FEF Dyg1y2) Ly + Gy f
and
Y/, = 5j_1{ —~ [ﬁuj—1/2 — (3= Dyj-1/2) (l t A1z + DZ,jfl/2)} ouj
o e

T

+r [roaye + /\y—1/2 (3 - p,j—l/Z)] [wf = \] = P
- (% - Dp,jfl/2) E?,j—l/Q + C;L—I/Z}

Identifying the two values of Y} for 2 < j < N —1 given by (29) in the box K; ,/, and by (30)
in the box K,/ ylelds the three point scheme

1
(31) Lj(u) = B <_ p,J+1/2> L)+ a (5 + Dp,j—1/2> LY 1y = BiCiiyja + 5 Ciy )
where L7 is the three-point operator defined by

L (u) el ajouyq + by ouy +cjouj_y
n

J
1 ul g —uj 1 ul! —ul_
+ciBil=—-D,., ]74_04. <_+D - )Q
(32) { J nz :J+1/2n hJ+1/2 i\9 pj—1/2 hi 172
_i{“jﬂ_“j U U
h; hjt1/2 hj-1/2

In (32) the coefficients a;, b; and ¢; are given by

r

o ;=B [+ (b = Dyirpe) (5+ 02+ Dllyy o) |
o bj =B |9uir12+ (5 — Dpjriy2) (5 — OAjr12 = “J“/?ﬂ
+a [19Mj—1/2 + (5 + Dpj172) (% TN+ D3

° ¢j=q; [—19#]'—1/2 + (3 + Dp,j—1/2) <% e Vo Dz’jfl/2>]

(33)

\

=R" andC =0
1 1 +1
*3 3 T JE3 ’

Replacing the two box operators [,” , and C" 1 by their values £

we obtain the following point scheme

(34) Lj(u) = R (f)



where L7 is given by (32) and R is the interpolation operator, (see (16))

1 1
®) B =5 (5 Dpre) Rl + 5 (5 + Do) Riyold)

The interest of (34) is that it makes apparent that the box scheme can be written in the form
of a compact finite difference scheme for the equation u; + cu; — euyy = f, working on irregular
mesh. (34) is actually a linear system in the incremental unknowns du}. In addition, once the
values of du? are known, the values of dp7 are computed using (29) or (30).

We conclude this section by noting that the box scheme has also the following non incremental
form (see Sect. 4)

(36) (B — E9C)u™ ™ = (B + k(1 — 9)C)u™ + kR"™(f)

which will be useful in the context of ADI like-methods. The operator B, C are simply deduced
from (32), (33), (34). They read, in the case where D} . 1/2 1s independent of n

(Bv); = {53[ Dy jt12)l5 + D ,j+1/2]}”j+1
(37) +1Bil5 — Dy j1/2)l5 — Dujii/2) + @jls + Dy j_1/0ll5 + Dy j— 1/2]}
H{ayls + Dpgorjells = Dugojel poja
and
(Cv); = {ﬂ][ i +(%—Dp,j+1/2)ﬁi/2]}vj+1
39 {5l G Dpsns) -~ el + G+ Dyt
- Oéj[h]%;2 (3 + Dy 1/2) 5 1/2] V-1

3.2 Finite difference analysis

In this section, we study the finite difference scheme resulting from the box-scheme (36) in
the homogeneous case and with a constant meshsize h; /5 = h. In addition, we assume that

D”J 12 = = D,. With these assumptions, scheme (36) may be written

(39) [B—k9Clu" =[B+k(1—19)Clu"
Equivalently, it can be expressed as the three-point implicit compact scheme

(40) alu?IlleagunH—i-a pult) —blu]+1+b0u +b qui

-
37), (38) and recall that A =ck /h ; p=ek/h?)

)(-+D +IN) —Ip
) (3 + Dy = A1 =9)) +p(l—9)
+2D(D +9N)

—2(1 =) p+2D, (D, — (1 =)\
(3 +D)b— w—9N) =9
=(-+D)( l%+Aﬂ—ﬁ»+uﬂ—m

—~

where the coefficients are (see

p
p

o ’—‘ »d
Il
TN
N|’—‘l\'>|>d

@o @ g

=)
Il
D[
_|_
[\

(41)

S
S
Il

H [N

‘Q“Q
==

\

The stability condition is deduced from a general result of Rigal, [23]



Proposition 3.1 The scheme (40), (41) is stable in the Von Neumann sense if and only if the
two following conditions are fulfilled

o (i) DyA+p>0

.auu%x+uwbwmﬁwﬁ—9u}zo
where D,, denotes D, = Dy, + (19 — %) A
Proof: We apply the result of Rigal [23]. The amplification factor of scheme (40) is g (0) =
91 (0)/92(0), 0 € [0,2x], with

(42) g1 (0) =byg+ (by +b_1) cos @ +1i(by —b_1) sinf
g2(0) =ap+ (a1 +a_1) cos @ +i(ag —a_p) sinf

The necessary and sufficient condition in order to have the strong stability condition
(43) sup g (0)] <1
0el0,27]
is
(44) art+a_1—b—b_1 < min[(a1 — a_1)2 — (b1 — b_1)2 ; (a1 + a_1)2 — (b1 + b_1)2]

Oue checks easily that this condition is equivalent to (z) + (7). [ ]

In [11], the following sufficient stability criterion has been derived in the case of the time-
independent convection-diffusion equation

1 1
(45) D, > E(sgnc) max (0,1 — E)

Using this result, we deduce that

Corollary 3.1 A set of sufficient stability conditions is
. A .

(i) 11+ ADy = Bl ((60) in [11))

(i) po + ADy > 0

(ii) DDy + (9 — 1) > 0

3.3 Equivalent equation analysis

We extend now to the convection-diffusion case the equivalent equation analysis of [7], [17]. If A
is a linear spatial operator, of maximal order O(A), the equivalent equation of a scheme applied
to an evolution equation

du
4 —=A
(46) o = Au
is the (formal) equation
du
(47) at = Au + § h® Eg11 0at1u

a>0(A)

obtained by performing the Taylor expansion of the scheme and by replacing all the time deriva-
tives but one, by space derivatives with the help of the modified equation itself. For a more
precise definition, we refer to [3, 12].



Proposition 3.2 Suppose that the velocity ¢ > 0 and the Peclet number Pe = % are fized.
Then, the equivalent equation of the scheme (40)

(48) Uy + CUy — Elgy = h By gy + h? B3 Ugpy + .. .
is such that the first order dissipation coefficient Ea, and the second order dispersive coefficient
E3 are respectively given by (Dy, = Dy, + (9 —1/2)\)
~ 1 9 ~ 5 € |~ 1
(49) Ey=¢D, ; Esz=c ﬁ(l—)\)—Du — D, + 19—5 A—D,

Proof: A convenient way to compute the coefficient E,, is simply to use the connection between
(47) and the amplification factor g (6) given by,

(50) g(0) = eksn(%)

where s5,(£) is the symbol of the spatial operator Apu(z) = —cuy +etge + Y 051 b Fat1 Oat1u
given by

(51) sn(€) = —icE —e&+ Y h* Bay (16"

a>1
This connection has been pointed out in [17, 3]. Replacing ¢ by 6 / h, we get
k
(52) kesp (€) =1n g (0) = —i N0 — 6% + - > it Egpq 077
a>1

The Taylor expansion of In g (0) at & = 0 is obtained by In g (#) = In g1 (#) — In g2 (0).
Taking into account that a_; +ap+a; =landIn(l+2z) =z — %2 + :1:_; + O (z*), we obtain for
In g12 (0)

(53) Ing (0) = Bi(0—1)0+By(d—1)60%+ B3 (9 —1)6° + 0O (6%
(54) Ingo(f) = By (9)60+ By (9)6%+ B3 (9)6° + O (6%,

where B;(¥), B2(¥), Bs(9) are functions whose exact expression is not needed in the sequel.
This yields finally In g (6) = A; 0 4+ A3 02 4+ A3 03 + O (#*) with

A= i)
(55) {A;:—M—Af)u As=i N (D2-H=2)) +u(Dut (-5 A-D,)}

The symbol of the spatial part of the equivalent equation

(56) wp = —ctg + (€ + h Ea) ugg + h* By tiggy + . ..

is

(57) sp (&) = —icE — (e +hEy) €2 —ih? B3 €3 + ...
Therefore

(58) ksh(f):—i)\ﬁ—(u—l—Eg%) 02—2'%E303+...

10



which yields

k k
(59) Alz—i)\ N A2:_H_E2E N A3:_iEE3.
Replacing the coefficients As and Ag by their values (55) , we deduce (49). [ |
In the asymptotic expansion (48), the hypothesis that the Peclet number Pe = % is kept

constant, implies actually that ¢ = O(h) — 0, when A — 0. Therefore, the effective total
dissipation coefficient is E3 + ;.

The equivalent equation is usually used to provide a tool for selecting parameters in finite
difference schemes, [17, 7, 8], for exemple by minimizing the numerical dissipation and dispersion.
Here we limit ourselves to the following empirical tuning:

e D, is selected according to [11]

1 1
(60) D, = 2 sgn(c) max(0,1 — P_e)
This value of D, is based on the numerical analysis of the box scheme for the time-

independent convection-diffusion equation cu, — eug, = f, [11].

e D, is selected according to the following empirical formula

(61) D, = %sgn(c) max (0, Pieo — %)

where the Peclet number is Pe = |c¢|h/2¢, and Pey > 1 is some threshold Peclet number,
which will be determined empirically. The sense of (61) is that when the time parameter
¢ = 1/2, we have the two following cases:

- If Pe > Pey, then the diffusion coefficient £y = 2'5(‘30 and the box scheme is first order
accurate.

- If Pe < Peg, then D, =0, E; = 0 and the box scheme is second order accurate.

Note that, both D,, and D, act on the numerical dispersion F3 in (49). Formulas (60) and (61)
are selected only for simplicity and are independant of the solution. We refer to [12] for more
accurate formulas, acting as nonlinear functions of the solution.

4 An ADI box scheme for the 2D convection-diffusion equation

In this section, we describe how to extend the box scheme (34) to regular 2D finite difference
meshes by an ADI algorithm. Consider the 2D linear convection-diffusion equation

Ut + ClUy + CoUy — 8(“’1:1: + Uyy) = f(xayat)a (.'L',y) € :]07 1[2
(62) Ilg(xayat) = g(:E,y,t), ($7y) € 1_‘D
ﬁ(l‘ayat) :h(.’ll',y,t), (.'L',y) ely

where I'p and 'y stand for the Dirichlet and the Neumann part of the boundary. Define the z
and y spatial operators by

(63) Alu(:E,y) = _(cluaz - Eumm) ; AZU(xay) = _(C2uy - 8uyy)
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The time ¥-scheme for (62) may be written as

(64) (I — k9A) (I — k0A)u™™ = (T + K1 —9)A) (I + k(1 — 9)Ap)u™
+ E@fM (1 —9) ") + O(k?)

with an O(k3) error term, if ¥ = 1/2. We approximate now the operator I — k¥ A; by I — kA,
where A, = B;'C,, and where B, and C, are the box operators defined in (37) and (38).
Approximating similarly I — k9 Ay by I —kJA,, with A, = B le, we obtain the following ADI
version of the box scheme

(65)[1 — kOB, *Cy] [I — k9B, 'Cy| u™ = [I+ k(1 —9)B, Cy] [I + k(1 -9)B,'C,] u"
+ k[0t + (1 —9)f"].

We check readily that u"*! can be obtained by the two step Peaceman-Rachford factorization
algorithm, [22, 16, 15, 25]:

66 (I — k9AL) G = [T + k(1 — 9)A ) u™ + k9 [9f" 1 + (1 - 9)f"] (a)
(66) (T — k9A ™ = [I+ k(1L — ) Az i+ k(1 —9) [0 + (1—0)f"]  (b)

Equation (66), shows that operator I — k¥ A, acts only on the horizontal components
('U,iyjo)QSiSNm_l, 2 < jo < Ny — 1. The operator I — kA, acts only on the vertical components
(Uio,j)QSjSNy_l, with 2 <49 < N, — 1. Let us describe now how to handle boundary conditions
in the context of scheme (64).

e Dirichlet boundary conditions

For Dirichlet boundary conditions u; ;= g "(xiy,Yj,) at boundary points, we simply specify
explicitly the exact value of uz)"rﬁ) = ¢""Y (x4, yj,) in (66), at the correct position in vector u? i
A classical question concerning the ADI scheme is to know which value should be affected in

the intermediate value @ on the boundary. Subtracting (66), from (66),, we deduce

(67) (I —k9AL) + (I + k(1 —9)A)]a = [I+k(1—9)A,]u"t + [T - kIA, ] u"
+ k(29 —1)[9f"T + (1 -9)f"].

Since operators A; and A, do not act on boundary points, we have the following identity for
boundary values @g. (O denotes any couple (4, ) such that u; ; € I' = 052.)

~ 1 n n
(68) g = o (up + ) + k(J - )(ﬁf -9
This value is applied in the intermediate state.

e Neumann boundary conditions

1 o )
In order to put %M_ = h™*! at boundary points in scheme (65), we use the local reconstruction

formula (30), expressing the diffusive flux as a function of the unknown u. We give the result
in the case where the boundary point is the left point of the box K3/ = [z1,72]. The exterior

n+1

normal is v = —(1,0). We deduce easily from (30) the identity linking u} ™, u) ™ to the values

12



of the diffusive flux at the boundary p} = eh(z1,t"), p’f“ = eh(z1,t" 1), supposed to be known
by the Neumann data on I'y.

( [Ipsjo+ (3 — Dp3ja)(3 — 9Xsn — 173/2)]7171ijrl

—[19#%/2 —+(1% - Dp,3/2)(% + 932 + Dg/z)]ugJrl
® = om0 D
—[(1 - 19)#3/2 - (? - Dp,3/2)(
+[(11— Ppzy2 + (5 — Dpz/2)(
+k(3 - Dp,3/2)Rg/2

+ (1 = 9)A3/2 — D3jo)|ut
— (1 =9)A3)2 + D3/o)]ub

5 Numerical results

5.1 Introduction

The aim of this section is to demonstrate the efficiency of the box-scheme on convection-diffusion
problems having sharp contrasts in the diffusion coefficients. Let us stress the following points:
first, although the box scheme designed in the preceding section is only first order accurate
for high Peclet numbers,(see(61)), the observed accuracy is greater than 1 in certain cases.
Second, the box scheme provides simultaneously approximations of both v and of the gradient
ug, allowing higher order reconstructions in u. This kind of reconstruction is not studied further
here. Finally, the main interest of the box scheme is that the same principle holds for convection
equations and for the convection-diffusion equation. This is not the case in the classical finite
volume methods where different numerical flux formulas are used depending on the nature of
the flux, convective or diffusive. Let us stress finally that the parameters of the scheme are used
in practice locally in each box, if the mesh is irregular.

5.2 Monodimensional test-cases

5.2.1 First test-case

We compare the numerical solution of the constant coefficient convection-diffusion problem de-
fined on the half line, z > 0.

U + Cly — EUgy = 0, x>0, ceR e>0
(70) u(z,0) =0, z>0
u(0,t) =1, wu(4o0,t)=0.

The exact solution is

1 T —ct cx T +ct
71 u(z,t) = = |erfc + exp(—) erfc
() (@.1) = 5 [erfel 55 + exp(D)erte( 5 5)

We have plotted in Fig. 1, Fig. 3 and Fig. 5, the exact and computed solutions (u,u,) with
the box scheme (34) at time 7" = 0.4 with a 200 box irregular mesh. The diffusion coefficients
are respectively ¢ = 0.02,0.005,0.001 and the velocity is ¢ = 1. We plot in addition in Fig. 2,
Fig. 4 and Fig. 6, the local Peclet number Pe;_ /5, which varies strongly, due to the irregularity
of the mesh. In the first two cases, the results are very good. As expected, we observe a very
good agreement between the exact solution and the computed solution in the two first cases.

13



The parameters of the box-scheme are 9;_;,5 = 0.55, D}, j_1/o = %sgn(c) max (0,1 — Pe_11/2),
.

Dyj_1/2= %sgn(c) max (0, P%O — Pe]il/z) with a threshold Peclet number Pey = 2.5, see (61). In
the last case, ¢ = 0.001, we have a convection dominated case and the scheme begins to show a
lack of accuracy, particularly for the gradient u,. On Table 1, we display the convergence rates
obtained for u and the diffusive flux p = —cu, in each of the three cases € = 0.02, ¢ = 0.005
and ¢ = 0.001. This rate is the L? convergence rate o where |u — up|r2p0,1) £ Ch®. We display
the convergence rate estimated for the pair of meshes 50/100 boxes and 100/200 boxes. The
results are very good in the three cases. Note that in the third case, the Peclet number begins
to be located above the threshold Peclet number, causing the box-scheme to have a stronger
artificial diffusion (upwind parameter D,,). However, the convergence rates are still good for u
and p = —eu,. If we select a smaller diffusion coefficient ¢, the scheme shows, as does every first
order scheme, a more noticeable lack of accuracy. A less crude tuning than (60), (61), will be
presented in future works, [12].

Diff. coefft. | Conv. rate (u), 50/100 and 100/200 | Conv. rate (p = —eu,), 50/100 and 100/200
e =0.02 1.57, 1.38 1.68, 1.11
e = 0.005 1.68, 1.40 1.29, 1.25
e =0.001 0.90, 1.78 0.61, 1.90

Table 1: Table of convergence rate for the first test case (70)

5.2.2 Second test-case

In this second test case, we demonstrate that the capabilities of the box scheme are poten-
tially very good on “real” problems, namely ones where sharp contrasts occur in the diffusion
coefficients. The test case consists of the following convection-diffusion equation, [14]

ug 4 uy — (e(z)uy)y =0 z € [0,1]
(72) u(z,0) =0, =z €]0,1]
w(0,t) =1, wu(l,t)=0

100% 0<z<0.15
1 0.15<x<0.25

where the diffusion coefficient is e(z) = { 1073 0.25 < z < 0.35
1071 0.35 <z <045
1 04<z<l

We display in Fig. 7 through 12 the values of u(x) (circles), p(z) = —eu, (straightlines) at the
6 times 77 = 0.084, Ty = 0.175, T3 = 0.238, T, = 0.35, T5 = 0.525 and Ty = 1.519. The mesh
is irregular (a finite-volume mesh) in order to prove that the scheme works like a finite volume
scheme. The value of the time integration parameter is ¢ = 0.5. We have 100 boxes. The
parameters D, ;_1/9, Dy ;_1/2 are selected independently in each box according to (60), (61).
The threshold Peclet number in (60) has been fixed at Pey = 2.5. The most interesting point is
that there is no numerical dispersion, and that the profiles are perfectly monotonic. However,
note that one can check numerically, the scheme does not formally satisfy a maximum principle:
dispersive oscillations can occur during a very short transient elapse of time at the beginning of
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the computation. In all our computations, this problem can be avoided if necessary' by simply
forcing u}H'l to belong to the physical interval of admissibility.

In Table 2, we give the convergence rates in the L? norm, for u and the diffusive flux p = —eu,
at the six times Tj, 1 < k < 6. The exact solution is taken to be the numerical solution obtained
with a 1024 point mesh. We report in Table 2 the convergence rates between a mesh of 50 boxes
and 100 boxes on one hand, and between a mesh of 100 and 200 boxes on the other hand. As
expected from the equivalent equation analysis, the scheme is first order accurate for u and for
p. This is better than a standard first order non mixed upwind scheme, in which there is no
simultaneous computation of the diffusive flux. Note that a mesh of 100 or 200 boxes is a small
mesh for such a case.

Time Conv. rate (u), 50/100 and 100/200 | Conv. rate (p = —cuy), 50/100 and 100/200
T, = 0.084 0.65, 0.74 6.48, 4.83
Ty =0.175 1.06, 0.89 0.94, 0.76
T3 =0.238 1.17, 0.96 1.60, 0.98
T, = 0.350 1.41, 0.99 1.55, 1.15
Ts = 0.525 1.63, 0.96 1.25, 1.00
Ts = 1.519 1.58, 0.94 1.58, 0.94

Table 2: Table of convergence rates for the second test case (72)

5.3 2D problems

5.3.1 Introduction

In this part, we solve a convection diffusion problem with our ADI box scheme for two academic
examples. In all cases, the time integration parameter J = % The upwind coefficients in the

directions x and y are Dy, 4z, Dy, and Dy 4, D, ,. They are computed by the 1D formulas

Dyyioijo = %sgn(cl) max(0,1 — o 1{
Du,:z;,jfl/2 = %Sgn(cl) X(07 Peo Pe,” 1/2)
(73) D,, = Lsgn(cy) max (0,1 — L
p:y’.]il/2 - ? g 2 ’ 1 ey,j71{2
Du,y,j—1/2 =3 sgn(cz) max (0, "Pey  Pe, ;12

where ¢{(cy, ¢2) is the velocity and Pe, ;_1/9, Pey ;_1/» are the edge Peclet numbers in the z and
y directions.

5.3.2 Test-case of Noye and Tan

We consider the test proposed in [21] which consists of the deplacement of a 2D Gaussian pulse,
initially centered at (zg,yo) = (0.5,0.5), and propagated by the convection-diffusion equation

ug + c.Vu — (€1Ugz + E2Uyy) =0

!This is the case for example, for the computation of quantities like concentrations or temperature that should
belong to a fixed interval.
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along the diagonal of the square 2 = [0,2]?, during 1.25 seconds. The Dirichlet boundary
conditions are the values of the exact solution on the boundary. The diffusion coefficients are
g1 = g9 = 0.01, and the velocity is ¢ = (0.8,0.8). The exact solution of this problem is given by

exp | — (z —cit —x9)*  (y — cat — yo)”
4t + 1 61(4t+1) 62(4t+1)

g(z,y,t) =

We compare our results with those of Turner and Truscott [27]. The error at time ¢y is the mesh
dependent error denoted by err(ty), defined by

1| 2N S (i, ) - 9(2(i),y(5), )2
Na Ny S S u(is ) ’

where N, and N, are respectively the number of horizontal and vertical nodes. The numerical
solution is computed on three different regular meshes:

- a coarse mesh of 961 nodes (31 points along = and y axis) (mesh 1).

- a medium mesh of 4096 nodes (64 points along z and y axis) (mesh 2).

- a fine mesh of 10201 nodes (101 points along = and y axis) (mesh 3).

The coarse mesh (mesh 1) is selected to obtain a Peclet number Pe > Pey = 2.5 giving that the
upwind coefficient D,, is not equal to zero. In contrast, D, = 0 for the two last meshes, mesh
2 and mesh 3, used by Turner and Truscott. We compare the peak level and the quantity epr
at final time T' = 1.25, with the values obtained by a Control Finite Volume Method used by
Turner and Truscott on meshes 2 and 3. We subscript the results with the sufixes Boz for the
box scheme, and T'T for the Turner and Truscott scheme. Additional results are given in the
case of the ADI box-scheme. These results are presented in Table 3. The peak height of the
exact solution is 1 at 7= 0, and 1/6 ~ 0.1667 at the final time 7" = 1.25.

(74) err(ty) =

Mesh size mesh 1 mesh 2 mesh 3
Peclet number 2.6667 1.2698 0.8

Box peak height | 0.1452 0.1636 0.1660

TT peak height 0.1382 0.1518

Box epr 2.2727073e-4 | 1.0844153e-5 | 9.4819593e-7
TT epr 4.975446e-5 1.424502e-5
Box L? error 0.0103 2.2239e-3 4.9213e-4

L? Conv. rate 2.0661 3.2644

Table 3: Comparison between the finite volume method and the ADI-box-scheme

The ADI box-scheme gives good results, in comparison with those of Turner and Truscott.
For this problem, the rate of the L? error is 2 when measured between mesh 1 and mesh 2 and
around 3 when measured between mesh 2 and mesh 3. Here, we display results for the velocity u
only. Note that one could use the value of the gradient to enhance the accuracy of the solution.
We have plotted in Fig. 13 and Fig. 14, the exact solution at the initial and final times and in
Fig. 15 through Fig. 18, the solutions computed with mesh 1 and mesh 3. The two last figures,
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Fig. 19 and Fig. 20 display the difference between the exact and the solutions computed with
mesh 1 and mesh 3. Fig. 17 and Fig. 19 show the dissipation and dispersion of the scheme at
low level spatial resolution in the cross direction z = y.

5.4 Test-case of Balaguer et al.

The second test is given by Balaguer et al. [1]. We compute the numerical solution of the
following equation

(75) ug + (vo + AY)ug — D(Ugy + Uyy) =0
with Dirichlet boundary conditions given by the exact solution

AM (x —z — 05 t)2  ¢?

76 t) = - -
(76) u(z,y,t) 1 Di(1 + 222/ 12) exp 4Dt(1 + \2t2/12) 4Dt

)7

where v is the velocity on y = 0, A is the slope of the velocity profile and D is a positive constant.
AM is a point source of mass at x = zp, y =0 and t = 0. Z is defined by T = z¢ + vot. We take
the computational domain € = [—20000; 20000] x [—2000; 2000], the initial time t;,; is equal to
tini = 2400, AM = 47Dt (1 + >\2152/12)1/2 so that the initial peak concentration is equal to 1.
We take the following parameters : zo = 7200, vy = 0.5, A =5x 1075, D = 10. In the two first
cases, the spatial step size is h = h; = hy = 200, (resp. 100) and the CFL number is 0.24. We
compute the solution during a time interval of 2400. The final time is ;4 = 4800. The final
peak height of the exact solution is 0.4991.

Note that the velocity (c1,c2) = (v(y),0) is nonsymmetric, whith v(y) = vp + Ay. The initial

Mesh size mesh 1 | mesh 2 | mesh 3

h 200 100 50

Nz 201 401 801

Ny 21 41 81

time step 80 40 20
Peak height 0.3643 | 0.4793 | 0.4955
L? error 59.5037 | 20.8254 | 4.6216
convergence rate 1.5146 | 2.1719

Table 4: Computed results at final time T=4800 for meshes 1,2 and 3 on Balaguer’s et al. test
case.

pulse is convected in the z-direction only. The Peclet number along z, Pe, = % is non-

constant. One has 4 < Pe, < 6 in the case h = 200, and 2 < Pe, < 3 in the case h = 100. In
this last case, the upwind coefficient D, , varies on each horizontal edge between 0 and 1/30.
The vertical coefficients Pe, and D, , vanish everywhere.

In a third case, we take a spatial step-size of h = 50. The upwind coefficient D, vanishes
eveywhere. The convergence rates are between 1.5 and 2. We have plotted some numerical
results in Fig. 21 through Fig.24.
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6 Conclusion

In this work, we have focused on the basic design of a mixed box-scheme for 1D convection-
diffusion equations. We stress that the design is the same in hyperbolic or parabolic regions. The
scheme has a practical accuracy depending on the value of the local Peclet number. Here, the
tuning of the upwind parameters is independent of the local behaviour of the solution. Future
work will be devoted to the study of nonlinear control of the upwind coefficients D,,, D,,, in order
to detect and prevent dispersive oscillations [12]. In addition, the extension to 2D problems with
irregular meshes is in progress.

Acknowledgements: The authors thank gratefully J. Roberts for her interest and constructive
critics on this paper.
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Figure 15: Computed solution for 31 points at final time T = 1.25.

final time 7" = 1.25.

0.18 T T T T T T T T T 0.18 T T T T T T T T T
016 0161
014l 0.14
012l 0.12
01F
0.08 Al
0.06
0.06 004k
0048 002
0.02
0"2 0‘.’4 0‘.’5 008 _0.020 0‘2 0‘4 0‘8 0‘.8 1‘ 1 ‘2 1‘4 1‘6 1‘8 2
Figure 17: Diagonal plots of exact solution w : Figure 18: Diagonal plots of exact solution w :
o and computed solution up : *, for 31 pts at o and computed solution uj : %, for 101 pts at
T =1.25. T =1.25.
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Figure 19: Error between exact and computed and computed

solutions for 31 points.

Figure 20: Error between
solutions for 101 points.
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Figure 21:

x

Initial contour plot, h = 100

Figure 23: Cross section in x=9600, h = 100
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Figure 22: Computed contour plot, h = 100

Figure 24: Cross
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