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Abstrat

In this paper, we introdue a box-sheme for time-dependent onvetion-di�usion equa-

tions, following priniples previously introdued by B. Courbet in [7℄ for hyperboli prob-

lems. This sheme belongs to the ategory of mixed �nite-volume shemes. This means that

it works on irregular meshes (�nite volume sheme) and omputes simultaneously the prin-

ipal unknown and its gradient in all Pelet regimes, ranging from pure di�usion (Pe = 0) to

pure onvetion (Pe = +1). The present paper fouses mainly on the design of the sheme,

whih is non standard, in the ase of the 1D onvetion-di�usion equation. The version of

the sheme presented here is of �rst or seond order depending on the loal Pelet number.

We extend the 1D sheme afterwards in 2D by an ADI like tehnique. Several numerial

results on 1D and 2D test ases of interest for ow simulation in porous media are presented,

some of them exhibiting sharp ontrasts in di�usion oeÆients.

Keywords: box-sheme - porous media - �nite volumes shemes - mixed method

1 Introdution

Originally introdued by H.B. Keller in [19℄ in the ase of the heat equation, the design of

the so alled \box-shemes" has reeived interest in the 80's in di�erent sienti� ommunities

in numerial omputations. In partiular, in ompressible aerodynamis, several authors have

adressed the extension of Keller's sheme to the Euler or Navier-Stokes ompressible equations,

[28, 29, 4, 6℄. However, these works reahed only a limited audiene due to the suess of the

�nite volume method based on Approximate Riemann Solvers, whih is today the building blok

of most applied CFD softwares. There are several reasons for this. First, the basi design of box

shemes, whih is at �rst similar to that of the �nite volume method, relies atually on a non

straightforward ompatibility between the degrees of freedom and the disrete equations [7, 5, 9℄.

This is onsidered as a serious shortoming of box-shemes. Seond, box shemes have no simple

time-expliit versions, whih is seen as a prohibitive drawbak for hyperboli problems. Finally,

some box shemes need for spei� ow patterns, like \soni" points or rarefation waves, a

speial numerial tuning, [5℄. Despite all these problems, box shemes are still of great interest,

beause they are very aurate on poor meshes.

�
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The box sheme presented here is the generalization to time-dependent onvetion-di�usion

equations of a box sheme introdued in [7℄ for onvetion equations. In this paper, we em-

phasize both the onstrution of the sheme, and its appliation to linear onvetion-di�usion

equations. The resulting sheme performs very well in the ase of di�usion oeÆients with large

ontrasts reahing values of as muh as 10

6

or more. This is of interest e.g. for the numerial

simulation of transport phenomena in porous media.

As in the ellipti (or paraboli) ase, [10, 13, 11℄ the basi priniple is to introdue the dif-

fusive ux p = �"u

x

as an auxiliary variable (mixed method) and to take the average of the

onservation equation on one side, of the losure law of the di�usive ux on the other side on

the same \boxes". In eah of these averages, two upwind quadrature formulas are introdued,

eah one being designed to ure the well-known osillations soures present in the approxima-

tion of onvetive-di�usion equations. The �rst one is a \time-independent" upwinding for the

average of the di�usive ux p

K

over a \box" K. This aims to prevent the spatial exponen-

tial instability at a stationary state u(x), solution of u

x

� "u

xx

= 0, espeially in boundary

layers. This upwinding has been studied in the 1D stationary ase in [11℄. The seond one

is an upwind quadrature formula for the average u

K

(t) of u(x; t) over the box K. Its role is

to give some ontrol on the stable dispersive osillations present in a entered disretization of

the time-dependent onvetion-di�usion equation. Although the box sheme we present here is

only �rst order aurate at high Pelet number, we stress that it omputes simultaneously the

prinipal unknown and its gradient (or the di�usive ux), whih orresponds to a higher order

method in the prinipal unknown. For higher order versions, we refer to [12℄.

Let us mention �nally that the box sheme presented here has strong links with other numerial

methods, in partiular :

� High order �nite di�erene ompat shemes [30, 26, 20, 24℄.

� Mixed �nite element and SUPG methods [9, 10, 13, 11℄.

The outline of the paper is as follows: after giving the notation in Set.2, we desribe in

Set.3 the design of the box-sheme for the 1D onvetion-di�usion equation, as well as some of

its properties : stability, auray, numerial dissipation and dispersion. Afterwards, we explain

in Set.4 how to extend this sheme to the 2D ase by an ADI like algorithm. Finally, we

present in Set.5 some numerial results for the 1D and 2D time-dependent onvetion-di�usion

equation. This work has been announed in [14℄.

2 Notation

We onsider the linear time-dependent onvetion-di�usion equation with onstant oeÆients

in the segment I =℄0 ; 1[ . Reall that this equation is

(1)

8

<

:

u

t

+ u

x

� "u

xx

= f(x; t) x 2 I; t � 0

u(x; 0) = u

0

(x)

u (0; t) = 0; u (1; t) = 0

The veloity is  2 R and the di�usion oeÆient is " > 0. We will onsider the purely onvetive

ase " = 0 as the limiting ase " ! 0. Therefore, we shall still use a sheme designed for

onvetion-di�usion equation for a purely onvetion equation. We stress that this is performed
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only at the level of the design of the sheme and not as a arti�ial di�usion method. The

notation for the disretization of the 1D equation is as follows: let the interval I be disretized

by a �nite element, possibly irregular mesh, with nodes x

1

= 0 < x

2

< : : : < x

N

= 1. We all

K

j�1=2

= [x

j�1

; x

j

℄ a box, for 2 � j � N . The size of the box K

j�1=2

is h

j�1=2

= x

j

� x

j�1

.

We make the quasi-uniformity hypothesis Ch � h

j�1=2

� h, where C > 0 is a onstant. We let

h

j

=

1

2

(h

j�1=2

+ h

j+1=2

) and h

1

= h

3=2

=2, h

N

= h

N�1=2

=2. The baryenter of the box K

j�1=2

is

x

j�1=2

=

1

2

(x

j

+ x

j�1

). The oeÆents �

j

; �

j

; �

j

; �

j

are de�ned by

(2)

�

�

j

= h

j�1=2

= h

j

; �

j

= 1 =�

j

; 2 � j � N

�

j

= h

j+1=2

= h

j

; �

j

= 1 = �

j

; 1 � j � N � 1

For any quantity Z

n

j

, we note the inremental unknown

(3) Æ Z

n

j

= (Z

n+1

j

� Z

n

j

)=k

where k = �t is the time-step. Dimensionless ell numbers used in the sequel are

(4)

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

�

j�1=2

= 

k

h

j�1=2

(Cell Courant number; �

j�1=2

2 R);

�

j�1=2

= "

k

h

2

j�1=2

(Cell di�usive number; �

j�1=2

> 0)

Pe

j�1=2

= jj

h

j�1=2

2"

(Cell Pelet number;Pe

j�1=2

� 0)

The disrete unknowns are denoted by u

n

j

, p

n

j

and are respetively approximations of the priipal

unknown u(x

j

; t

n

) and p(x

j

; t

n

) = �"u

x

(x

j

; t

n

). The exat average operator onto the funtions

onstant in eah box K

j�1=2

is denoted by �

0

,

(5) (�

0

f)

jK

j�1=2

=

1

h

j�1=2

Z

x

j

x

j�1

f(x) dx; f 2 L

2

(I)

For any funtion f(x), the notation f (x) will be used in the sequel for some approximation

of �

0

f whih depends on the ontext. The design of suh approximations is the heart of the

paper, as will beome lear in Set.3.

3 A upwind box-sheme for the time-dependent onvetion-

di�usion equation

3.1 Semi-disrete spatial box-sheme

We extend the design priniples introdued by B. Courbet in [7℄, from the ase of the onvetion

equation u

t

+ u

x

= 0 to the onvetion-di�usion problem

(6)

8

<

:

u

t

+ u

x

� "u

xx

= f(x; t)

u (0; t) = u (1; t) = 0

u (x; 0) = u

0

(x)
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We write (6) in mixed form by introduing the di�usive ux p = �"u

x

as an auxiliary unknown

(7)

8

>

>

<

>

>

:

u

t

+ u

x

+ p

x

= f (x; t) t � 0

p = �"u

x

u (x; 0) = u

0

(x) ; p (x; 0) = �"u

0;x

u (0; t) = u (1; t) = 0

Integrating (7)

1

, (7)

2

over the box K

j�1=2

yields the spatial semi-disrete relations, whih

hold at the level of the exat solution,

(8)

8

>

>

>

>

<

>

>

>

>

:

� h

j�1=2

d

dt

�

0

u

jj�1=2

(t) +  [u (x

j

; t)� u (x

j�1

; t)℄ (a)

+[p (x

j

; t)� p(x

j�1

; t)℄ = h

j�1=2

(�

0

f)

jj�1=2

(t)

� h

j�1=2

(�

0

p)

jj�1=2

(t) = �" [u (x

j

; t)� u (x

j�1

; t)℄ (b)

� u (x

1

; t) = u (x

N

; t) = 0 ()

� u

j

(0) = u

0

(x

j

)

Let us introdue now the semi-disrete unknowns u

j

(t), p

j

(t), approximating u(x

j

; t), p(x

j

; t).

The semi-disrete box-sheme we onsider is

(9)

8

>

>

<

>

>

:

d

dt

�u

j�1=2

(t) +  [u

j

(t)� u

j�1

(t)℄=h

j�1=2

+ [p

j

(t)� p

j�1

(t)℄=h

j�1=2

=

�

f

j�1=2

(t) (a)

�p

j�1=2

(t) = �" [u

j

(t)� u

j�1

(t)℄=h

j�1=2

(b)

u

1

(t) = u

N

(t) = 0 ()

u

j

(0) = u

0

(x

j

) (d)

where �u

j�1=2

(t), �p

j�1=2

(t), are respetively approximations of (�

0

u

h

)

j�1=2

(t) and of (�

0

p

h

)

j�1=2

(t).

In addition,

�

f

j�1=2

(t) ' (�

0

f)

j�1=2

(t). Let us stress that the ornerstone of box-shemes on-

sists mainly into the de�nition of the two approximations of (�

0

u

h

)

j�1=2

(t) and (�

0

p

h

)

j�1=2

(t).

We restrit ourselves in this paper to two-point quadrature formulas,

(10) (�

0

u

h

)

j�1=2

(t) ' Q

u

(u

j

(t); u

j�1

(t))

(11) (�

0

p

h

)

j�1=2

(t) ' Q

p

(p

j

(t); p

j�1

(t))

The losure quadrature formula (11) for the di�usive ux has been studied in [11℄ in the ontext

of the time-independent onvetion-di�usion equation u

x

� "u

xx

= f . We keep for �p

j�1=2

(t) a

formula like (54) in [11℄ of the form

(12) �p

j�1=2

(t) =

1

2

[p

j

(t) + p

j�1

(t)℄�D

p;j�1=2

(t) [p

j

(t)� p

j�1

(t)℄

D

p;j�1=2

(t) is a pieewise onstant funtion whih aims to suppress any osillating mode at

the stationary state. A neessary ondition is that D

p;j�1=2

 � 0, (see (61) in [11℄, [7℄). For

�

f

j�1=2

(t), we simply take the exat formula

�

f

j�1=2

(t) = (�

0

f(t))

jj�1=2

. For de�ning the ap-

proximate average value �u

j�1=2

, we follow B. Courbet who introdued an upwind formula of the

form [7℄

(13) �u

j�1=2

(t) =

1

2

[u

j

(t) + u

j�1

(t)℄ +D

u;j�1=2

(t) [u

j

(t)� u

j�1

(t)℄
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whih plays a role only during the time-dependent phase. Let us onsider now the time integra-

tion of (9

a

). The basi time sheme is here the #-sheme, but higher order time shemes ould

be used, without hanging the basi priniples of the design, [8, 12℄. Integrating (9) in time by

the #-sheme yields the �rst equation of the box-sheme (reall that Æu

n

j�1=2

=

u

n+1

j�1=2

�u

n

j�1=2

k

)

(14)

h

j�1=2

Æ u

n

j�1=2

= �(1� #) (u

n

j

� u

n

j�1

)� # 

�

u

n+1

j

� u

n+1

j�1

�

� (1� #) (p

n

j

� p

n

j�1

)

�# (p

n+1

j

� p

n+1

j�1

) + h

j�1=2

�

(1� #) f

n

j�1=2

+ # f

n+1

j�1=2

�

Denoting the total ux F

n

j

= u

n

j

+ p

n

j

, (14) may be rewritten

Æu

n

j�1=2

= �

1

h

j�1=2

(F

n

j

� F

n

j�1

)�

#k

h

j�1=2

(Æu

n

j

+ Æp

n

j

� Æu

n

j�1

� Æp

n

j�1

)(15)

+ R

n

j�1=2

(f)

where the interpolation box operator R

n

j�1=2

(f) is de�ned by

(16) R

n

j�1=2

(f) = (1� #)f

n

j�1=2

+ # f

n+1

j�1=2

The inremental average Æu

n

j�1=2

is de�ned by the two point formula

(17) Æu

n

j�1=2

= (

1

2

+D

n

u;j�1=2

)Æu

n

j

+ (

1

2

�D

n

u;j�1=2

)Æu

n

j�1

:

Using this expression in (15) yields

(18) L

n

j�1=2

(u; p) = R

n

j�1=2

(f)

where the box operator L

n

j�1=2

is de�ned in eah box K

j�1=2

by

(19)

8

<

:

L

n

j�1=2

(u; p) =

h

1

2

+ #�

j�1=2

+D

n

u;j�1=2

i

Æu

n

j

+

h

1

2

� #�

j�1=2

�D

n

u;j�1=2

i

Æu

n

j�1

+

1

h

j�1=2

(F

n

j

� F

n

j�1

) + #

k

h

j�1=2

(Æp

n

j

� Æp

n

j�1

)

We onsider now the disrete form of the onstitutive law (9

b

). We selet the oeÆient D

p

(t)

to be onstant in time and in eah box K

j�1=2

and denote it by D

p;j�1=2

. At eah time step t

n

we have the relation

(20)

�

1

2

�D

p;j�1=2

�

p

n

j

+

�

1

2

+D

p;j�1=2

�

p

n

j�1

= �

"

h

j�1=2

(u

n

j

� u

n

j�1

)

Using the inremental variables Æu

n

j

, Æu

n

j�1

, Æp

n

j

, Æp

n

j�1

, (20) an be rewritten as, (subtrat (20)

at time n from (20) at time n+ 1),

k#

"

h

j�1=2

(Æu

n

j

� Æu

n

j�1

) + k#

�

1

2

�D

p;j�1=2

�

Æp

n

j

+ k#

�

1

2

+D

p;j�1=2

�

Æ p

n

j�1

(21)

= �

"

h

j�1=2

(u

n

j

� u

n

j�1

)�

�

1

2

�D

p;j�1=2

�

p

n

j

�

�

1

2

+D

p;j�1=2

�

p

n

j�1
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Note that although the right-hand side term is zero in identity (21), we keep it for onveniene in

subsequent omputations. Dividing by h

j�1=2

, we get (�

j�1=2

= "k=h

2

j�1=2

in eah box K

j�1=2

.)

#�

j�1=2

(Æu

n

j

� Æu

n

j�1

) +

�

1

2

�D

p;j�1=2

�

k#

h

j�1=2

Æp

n

j

+

�

1

2

+D

p;j�1=2

�

k#

h

j�1=2

Æp

n

j�1

= �

�

j�1=2

k

(u

n

j

� u

n

j�1

)�

1

h

j�1=2

��

1

2

�D

p;j�1=2

�

p

n

j

+

�

1

2

+D

p;j�1=2

�

p

n

j�1

�

Let us de�ne the \box" operator C

n

j�1=2

(u; p) by

C

n

j�1=2

(u; p) = #�

j�1=2

(Æu

n

j

� Æu

n

j�1

) +

�

j�1=2

k

(u

n

j

� u

n

j�1

)(22)

+

1

h

j�1=2

��

1

2

�D

p;j�1=2

�

p

n

j

+

�

1

2

+D

p;j�1=2

�

p

n

j�1

�

+

�

1

2

�D

p;j�1=2

�

k#

h

j�1=2

Æp

n

j

+

�

1

2

+D

p;j�1=2

�

k#

h

j�1=2

Æp

n

j�1

Then, (21) may be rewritten

(23) C

n

j�1=2

(u; p) = 0

Using (18) and (23), we obtain that the 1D box sheme for the time-dependent onvetion-

di�usion equation reads

(24)

(

L

n

j

(u) = R

n

j

(f) (a)

C

n

j�1=2

(u; p) = 0 (b)

Equations (24

a

) and (24

b

) are respetively a disretization of the onservation law and of the

onstitutive law of the di�usive ux. We eliminate now at the disrete level the di�usive ux p

n

j

at the interfae of the boxes K

j�1=2

andK

j+1=2

. Reall that h

j

=

1

2

(h

j�1=2

+h

j+1=2

), 2 � j � N ,

with h

1

= h

3=2

=2, h

N

= h

N�1=2

=2. Let us de�ne the values Y

n

j

by

(25) Y

n

j

= #

k

h

j

Æp

n

j

(# > 0):

The following relations hold, (see (2))

(26) �

j

Y

n

j

= #

k

h

j�1=2

Æp

n

j

; �

j�1

Y

n

j�1

= #

k

h

j�1=2

Æp

n

j�1

Then, sheme (24) an be rewritten as the linear system in (Y

n

j

; Y

n

j�1

) onsisting of (27) and

(28)

(27)

8

<

:

�

j

Y

n

j

� �

j�1

Y

n

j�1

= L

n

j�1=2

�

�

1

2

+ #�

j�1=2

+D

n

u;j�1=2

�

Æu

n

j

�

�

1

2

� #�

j�1=2

�D

n

u;j�1=2

�

Æu

n

j�1

�

1

h

j�1=2

(F

n

j

� F

n

j�1

)
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(28)

8

>

<

>

:

�

1

2

�D

p;j�1=2

�

�

j

Y

n

j

+

�

1

2

+D

p;j�1=2

�

�

j�1

Y

n

j�1

= C

n

j�1=2

�

�

j�1=2

k

(u

n

j

� u

n

j�1

)�

1

h

j�1=2

n

�

1

2

�D

p;j�1=2

�

p

n

j

+

�

1

2

+D

p;j�1=2

�

p

n

j�1

o

�#�

j�1=2

(Æu

n

j

� Æu

n

j�1

)

Solving the 2�2 system (27), (28) with unknowns (Y

n

j

; Y

n

j�1

) yields in box K

j�1=2

(29)

8

>

>

>

>

>

<

>

>

>

>

>

:

Y

n

j

= �

j

n

�

h

#�

j�1=2

+

�

1

2

+D

p;j�1=2

�

�

1

2

+ #�

j�1=2

+D

n

u;j�1=2

�i

Æu

n

j

+

h

#�

j�1=2

�

�

1

2

+D

p;j�1=2

�

�

1

2

� #�

j�1=2

�D

n

u;j�1=2

�i

Æu

n

j�1

�

1

k

�

�

j�1=2

+ �

j�1=2

�

1

2

+D

p;j�1=2

��

[u

n

j

� u

n

j�1

℄�

1

h

j�1=2

p

n

j

+(

1

2

+D

p;j�1=2

)L

n

j�1=2

+ C

n

j�1=2

o

and

(30)

8

>

>

>

>

>

<

>

>

>

>

>

:

Y

n

j�1

= �

j�1

n

�

h

#�

j�1=2

�

�

1

2

�D

p;j�1=2

�

�

1

2

+ #�

j�1=2

+D

n

u;j�1=2

�i

Æu

n

j

+

h

#�

j�1=2

+

�

1

2

�D

p;j�1=2

�

�

1

2

� #�

j�1=2

�D

n

u;j�1=2

�i

Æu

n

j�1

+

1

k

�

��

j�1=2

+ �

j�1=2

�

1

2

�D

p;j�1=2

��

[u

n

j

� u

n

j�1

℄�

1

h

j�1=2

p

n

j�1

�

�

1

2

�D

p;j�1=2

�

L

n

I;j�1=2

+ C

n

j�1=2

o

Identifying the two values of Y

n

j

for 2 � j � N � 1 given by (29) in the box K

j�1=2

and by (30)

in the box K

j+1=2

yields the three-point sheme

(31) L

n

j

(u) = �

j

�

1

2

�D

p;j+1=2

�

L

n

j+1=2

+ �

j

�

1

2

+D

p;j�1=2

�

L

n

j�1=2

� �

j

C

n

j+1=2

+ �

j

C

n

j�1=2

where L

n

j

is the three-point operator de�ned by

(32)

8

>

>

>

>

>

<

>

>

>

>

>

:

L

n

j

(u)

def

= a

j

Æu

n

j+1

+ b

j

Æu

n

j

+ 

j

Æu

n

j�1

+

�

�

j

�

1

2

�D

p;j+1=2

�

u

n

j+1

� u

n

j

h

j+1=2

+ �

j

�

1

2

+D

p;j�1=2

�

u

n

j

� u

n

j�1

h

j�1=2

�

�

"

h

j

�

u

n

j+1

� u

n

j

h

j+1=2

�

u

n

j

� u

n

j�1

h

j�1=2

�

In (32) the oeÆients a

j

, b

j

and 

j

are given by

(33)

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

� a

j

= �

j

h

�#�

j+1=2

+

�

1

2

�D

p;j+1=2

�

�

1

2

+ #�

j+1=2

+D

n

u;j+1=2

�i

� b

j

= �

j

h

#�

j+1=2

+

�

1

2

�D

p;j+1=2

�

�

1

2

� #�

j+1=2

�D

n

u;j+1=2

�i

+�

j

h

#�

j�1=2

+

�

1

2

+D

p;j�1=2

�

�

1

2

+ #�

j�1=2

+D

n

u;j�1=2

�i

� 

j

= �

j

h

�#�

j�1=2

+

�

1

2

+D

p;j�1=2

�

�

1

2

� #�

j�1=2

�D

n

u;j�1=2

�i

Replaing the two box operators L

n

j�

1

2

and C

n

j�

1

2

by their values L

n

j�

1

2

= R

n

j�

1

2

and C

n

j�

1

2

= 0,

we obtain the following point sheme

(34) L

n

j

(u) = R

n

j

(f)

7



where L

n

j

is given by (32) and R

n

j

is the interpolation operator, (see (16))

(35) R

n

j

(f) = �

j

�

1

2

�D

p;j+1=2

�

R

n

j+1=2

(f) + �

j

�

1

2

+D

p;j�1=2

�

R

n

j�1=2

(f)

The interest of (34) is that it makes apparent that the box sheme an be written in the form

of a ompat �nite di�erene sheme for the equation u

t

+ u

x

� "u

xx

= f , working on irregular

mesh. (34) is atually a linear system in the inremental unknowns Æu

n

j

. In addition, one the

values of Æu

n

j

are known, the values of Æp

n

j

are omputed using (29) or (30).

We onlude this setion by noting that the box sheme has also the following non inremental

form (see Set. 4)

(36) (B � k#C)u

n+1

= (B + k(1� #)C)u

n

+ kR

n

(f)

whih will be useful in the ontext of ADI like-methods. The operator B, C are simply dedued

from (32), (33), (34). They read, in the ase where D

n

u;j�1=2

is independent of n

(37)

8

>

>

>

<

>

>

>

:

(Bv)

j

=

n

�

j

[

1

2

�D

p;j+1=2

℄[

1

2

+D

u;j+1=2

℄

o

v

j+1

+

n

�

j

[

1

2

�D

p;j+1=2

℄[

1

2

�D

u;j+1=2

℄ + �

j

[

1

2

+D

p;j�1=2

℄[

1

2

+D

u;j�1=2

℄

o

v

j

+

n

�

j

[

1

2

+D

p;j�1=2

℄[

1

2

�D

u;j�1=2

℄

o

v

j�1

and

(38)

8

>

>

>

>

<

>

>

>

>

:

(Cv)

j

= �

n

�

j

[�

"

h

2

j+1=2

+ (

1

2

�D

p;j+1=2

)



h

j+1=2

℄

o

v

j+1

�

n

�

j

[

"

h

2

j+1=2

� (

1

2

�D

p;j+1=2

)



h

j+1=2

℄� �

j

[

"

h

2

j�1=2

+ (

1

2

+D

p;j�1=2

)



h

j�1=2

℄

o

v

j

�

n

�

j

[

�"

h

2

j�1=2

� (

1

2

+D

p;j�1=2

)



h

j�1=2

℄

o

v

j�1

3.2 Finite di�erene analysis

In this setion, we study the �nite di�erene sheme resulting from the box-sheme (36) in

the homogeneous ase and with a onstant meshsize h

j+1=2

= h. In addition, we assume that

D

n

u;j�1=2

= D

u

. With these assumptions, sheme (36) may be written

(39) [B � k #C℄u

n+1

= [B + k (1 � #)C℄u

n

Equivalently, it an be expressed as the three-point impliit ompat sheme

(40) a

1

u

n+1

j+1

+ a

0

u

n+1

j

+ a

�1

u

n+1

j�1

= b

1

u

n

j+1

+ b

0

u

n

j

+ b

�1

u

n

j�1

where the oeÆients are (see (37), (38) and reall that � =  k = h ; � = " k = h

2

)

(41)

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

a

1

=

�

1

2

�D

p

� �

1

2

+D

u

+ #�

�

� #�

b

1

=

�

1

2

�D

p

� �

1

2

+D

u

� � (1� #)

�

+ � (1� #)

a

0

=

1

2

+ 2#�+ 2D

p

(D

u

+ #�)

b

0

=

1

2

� 2 (1� #)�+ 2D

p

(D

u

� (1� #)�)

a

�1

=

�

1

2

+D

p

� �

1

2

�D

u

� #�

�

� #�

b

�1

=

�

1

2

+D

p

� �

1

2

�D

u

+ � (1 � #)

�

+ � (1� #)

The stability ondition is dedued from a general result of Rigal, [23℄

8



Proposition 3.1 The sheme (40), (41) is stable in the Von Neumann sense if and only if the

two following onditions are ful�lled

� (i)

~

D

u

�+ � � 0

� (ii) [D

p

�+ �℄

h

~

D

u

D

p

+

�

#�

1

2

�

�

i

� 0

where

~

D

u

denotes

~

D

u

= D

u

+

�

#�

1

2

�

�.

Proof: We apply the result of Rigal [23℄. The ampli�ation fator of sheme (40) is g (�) =

g

1

(�) = g

2

(�) ; � 2 [0; 2�[, with

(42)

�

g

1

(�) = b

0

+ (b

1

+ b

�1

) os � + i (b

1

� b

�1

) sin �

g

2

(�) = a

0

+ (a

1

+ a

�1

) os � + i (a

1

� a

�1

) sin �

The neessary and suÆient ondition in order to have the strong stability ondition

(43) sup

�2[0;2�[

jg (�)j � 1

is

(44) a

1

+ a

�1

� b

1

� b

�1

� min [(a

1

� a

�1

)

2

� (b

1

� b

�1

)

2

; (a

1

+ a

�1

)

2

� (b

1

+ b

�1

)

2

℄

One heks easily that this ondition is equivalent to (i) + (ii). �

In [11℄, the following suÆient stability riterion has been derived in the ase of the time-

independent onvetion-di�usion equation

(45) D

p

�

1

2

(sgn )max(0; 1 �

1

Pe

):

Using this result, we dedue that

Corollary 3.1 A set of suÆient stability onditions is

(i) �+ �D

p

�

j�j

2

((60) in [11℄)

(ii) �+ �

~

D

u

� 0

(iii)

~

D

u

D

p

+ (#�

1

2

)� � 0

3.3 Equivalent equation analysis

We extend now to the onvetion-di�usion ase the equivalent equation analysis of [7℄, [17℄. If A

is a linear spatial operator, of maximal order O(A), the equivalent equation of a sheme applied

to an evolution equation

(46)

du

dt

= Au

is the (formal) equation

(47)

du

dt

= Au+

X

��O(A)

h

�

E

�+1

�

�+1

u

obtained by performing the Taylor expansion of the sheme and by replaing all the time deriva-

tives but one, by spae derivatives with the help of the modi�ed equation itself. For a more

preise de�nition, we refer to [3, 12℄.

9



Proposition 3.2 Suppose that the veloity  > 0 and the Pelet number Pe =

jjh

2"

are �xed.

Then, the equivalent equation of the sheme (40)

(48) u

t

+ u

x

� "u

xx

= hE

2

u

xx

+ h

2

E

3

u

xxx

+ : : :

is suh that the �rst order dissipation oeÆient E

2

, and the seond order dispersive oeÆient

E

3

are respetively given by (

~

D

u

= D

u

+ (#� 1=2)�)

(49) E

2

= 

~

D

u

; E

3

= 

�

1

12

(1� �

2

)�

~

D

2

u

�

�

"

h

�

~

D

u

+

�

#�

1

2

�

��D

p

�

Proof: A onvenient way to ompute the oeÆient E

�

is simply to use the onnetion between

(47) and the ampli�ation fator g (�) given by,

(50) g (�) = e

ks

h

(

�

h

)

where s

h

(�) is the symbol of the spatial operator A

h

u(x) = �u

x

+ "u

xx

+

P

��1

h

�

E

�+1

�

�+1

u

given by

(51) s

h

(�) = �i  � � " �

2

+

X

��1

h

�

E

�+1

(i �)

�+1

This onnetion has been pointed out in [17, 3℄. Replaing � by � = h, we get

(52) ks

h

(�) = ln g (�) = �i � � � � �

2

+

k

h

X

��1

i

�+1

E

�+1

�

�+1

The Taylor expansion of ln g (�) at � = 0 is obtained by ln g (�) = ln g

1

(�)� ln g

2

(�).

Taking into aount that a

�1

+ a

0

+ a

1

= 1 and ln (1 + x) = x�

x

2

2

+

x

3

3

+O (x

4

), we obtain for

ln g

1;2

(�)

ln g

1

(�) = B

1

(#� 1) � +B

2

(#� 1) �

2

+B

3

(#� 1) �

3

+O (�

4

)(53)

ln g

2

(�) = B

1

(#) � +B

2

(#) �

2

+B

3

(#) �

3

+O (�

4

);(54)

where B

1

(#), B

2

(#), B

3

(#) are funtions whose exat expression is not needed in the sequel.

This yields �nally ln g (�) = A

1

� +A

2

�

2

+A

3

�

3

+O (�

4

) with

(55)

(

A

1

= �i �

A

2

= ��� �

~

D

u

; A

3

= i

n

�

�

~

D

2

u

�

1

12

(1� �

2

)

�

+ �

�

~

D

u

+

�

#�

1

2

�

��D

p

�o

The symbol of the spatial part of the equivalent equation

(56) u

t

= �u

x

+ ("+ hE

2

)u

xx

+ h

2

E

3

u

xxx

+ : : :

is

(57) s

h

(�) = �i � � ("+ hE

2

) �

2

� ih

2

E

3

�

3

+ : : :

Therefore

(58) ks

h

(�) = �i � � �

�

�+E

2

k

h

�

�

2

� i

k

h

E

3

�

3

+ : : :

10



whih yields

(59) A

1

= �i � ; A

2

= ���E

2

k

h

; A

3

= �i

k

h

E

3

:

Replaing the oeÆients A

2

and A

3

by their values (55) , we dedue (49). �

In the asymptoti expansion (48), the hypothesis that the Pelet number Pe =

jjh

2"

is kept

onstant, implies atually that " = O(h) ! 0, when h ! 0. Therefore, the e�etive total

dissipation oeÆient is E

2

+

"

h

.

The equivalent equation is usually used to provide a tool for seleting parameters in �nite

di�erene shemes, [17, 7, 8℄, for exemple by minimizing the numerial dissipation and dispersion.

Here we limit ourselves to the following empirial tuning:

� D

p

is seleted aording to [11℄

(60) D

p

=

1

2

sgn()max(0; 1 �

1

Pe

)

This value of D

p

is based on the numerial analysis of the box sheme for the time-

independent onvetion-di�usion equation u

x

� "u

xx

= f , [11℄.

� D

u

is seleted aording to the following empirial formula

(61) D

u

=

1

2

sgn()max(0;

1

Pe

0

�

1

Pe

)

where the Pelet number is Pe = jjh=2", and Pe

0

� 1 is some threshold Pelet number,

whih will be determined empirially. The sense of (61) is that when the time parameter

# = 1=2, we have the two following ases:

- If Pe � Pe

0

, then the di�usion oeÆient E

2

=

jj

2Pe

0

and the box sheme is �rst order

aurate.

- If Pe < Pe

0

, then D

u

= 0, E

2

= 0 and the box sheme is seond order aurate.

Note that, both D

u

and D

p

at on the numerial dispersion E

3

in (49). Formulas (60) and (61)

are seleted only for simpliity and are independant of the solution. We refer to [12℄ for more

aurate formulas, ating as nonlinear funtions of the solution.

4 An ADI box sheme for the 2D onvetion-di�usion equation

In this setion, we desribe how to extend the box sheme (34) to regular 2D �nite di�erene

meshes by an ADI algorithm. Consider the 2D linear onvetion-di�usion equation

(62)

8

<

:

u

t

+ 

1

u

x

+ 

2

u

y

� "(u

xx

+ u

yy

) = f(x; y; t); (x; y) 2 
 =℄0; 1[

2

u(x; y; t) = g(x; y; t); (x; y) 2 �

D

�u

�n

(x; y; t) = h(x; y; t); (x; y) 2 �

N

where �

D

and �

N

stand for the Dirihlet and the Neumann part of the boundary. De�ne the x

and y spatial operators by

(63) A

1

u(x; y) = �(

1

u

x

� "u

xx

) ; A

2

u(x; y) = �(

2

u

y

� "u

yy

)

11



The time #-sheme for (62) may be written as

(I � k#A

1

)(I � k#A

2

)u

n+1

= (I + k(1 � #)A

1

)(I + k(1� #)A

2

)u

n

(64)

+ k(#f

n+1

+ (1� #)f

n

) +O(k

2

)

with an O(k

3

) error term, if # = 1=2. We approximate now the operator I �k#A

1

by I�k#A

x

,

where A

x

= B

�1

x

C

x

, and where B

x

and C

x

are the box operators de�ned in (37) and (38).

Approximating similarly I�k#A

2

by I�k#A

y

, with A

y

= B

�1

y

C

y

, we obtain the following ADI

version of the box sheme

�

I � k#B

�1

x

C

x

� �

I � k#B

�1

y

C

y

�

u

n+1

=

�

I + k(1� #)B

�1

x

C

x

� �

I + k(1� #)B

�1

y

C

y

�

u

n

(65)

+ k

�

#f

n+1

+ (1� #)f

n

�

:

We hek readily that u

n+1

an be obtained by the two step Peaeman-Rahford fatorization

algorithm, [22, 16, 15, 25℄:

(66)

�

(I � k#A

x

)~u = [I + k(1� #)A

y

℄ u

n

+ k#

�

#f

n+1

+ (1� #)f

n

�

(a)

(I � k#A

y

)u

n+1

= [I + k(1� #)A

x

℄ ~u+ k(1� #)

�

#f

n+1

+ (1� #)f

n

�

(b)

Equation (66)

a

shows that operator I � k#A

x

ats only on the horizontal omponents

(u

i;j

0

)

2�i�N

x

�1

, 2 � j

0

� N

x

� 1. The operator I � k#A

y

ats only on the vertial omponents

(u

i

0

;j

)

2�j�N

y

�1

, with 2 � i

0

� N

x

� 1. Let us desribe now how to handle boundary onditions

in the ontext of sheme (64).

� Dirihlet boundary onditions

For Dirihlet boundary onditions u

n

i

0

;j

0

= g

n

(x

i

0

; y

j

0

) at boundary points, we simply speify

expliitly the exat value of u

n+1

i

0

;j

0

= g

n+1

(x

i

0

; y

j

0

) in (66)

b

at the orret position in vetor u

n

i;j

.

A lassial question onerning the ADI sheme is to know whih value should be a�eted in

the intermediate value ~u on the boundary. Subtrating (66)

b

from (66)

a

, we dedue

[(I � k#A

x

) + (I + k(1� #)A

x

)℄~u = [I + k(1� #)A

y

℄u

n+1

+ [I � k#A

y

℄u

n

(67)

+ k(2#� 1)

�

#f

n+1

+ (1� #)f

n

�

:

Sine operators A

x

and A

y

do not at on boundary points, we have the following identity for

boundary values ~u

�

. (� denotes any ouple (i; j) suh that u

i;j

2 � = �
.)

(68) ~u

�

=

1

2

(u

n

�

+ u

n+1

�

) + k(#�

1

2

)(#f

n+1

�

+ (1� #)f

n

�

)

This value is applied in the intermediate state.

� Neumann boundary onditions

In order to put

�u

��

n+1

= h

n+1

at boundary points in sheme (65), we use the loal reonstrution

formula (30), expressing the di�usive ux as a funtion of the unknown u. We give the result

in the ase where the boundary point is the left point of the box K

3=2

= [x

1

; x

2

℄. The exterior

normal is � = �(1; 0). We dedue easily from (30) the identity linking u

n+1

1

; u

n+1

2

to the values

12



of the di�usive ux at the boundary p

n

1

= "h(x

1

; t

n

), p

n+1

1

= "h(x

1

; t

n+1

), supposed to be known

by the Neumann data on �

N

.

(69)

8

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

:

[#�

3=2

+ (

1

2

�D

p;3=2

)(

1

2

� #�

3=2

�D

3=2

)℄u

n+1

1

�[#�

3=2

� (

1

2

�D

p;3=2

)(

1

2

+ #�

3=2

+D

3=2

)℄u

n+1

2

= #

k

h

3=2

p

n+1

1

+ (1� #)

k

h

3=2

p

n

1

�[(1� #)�

3=2

� (

1

2

�D

p;3=2

)(

1

2

+ (1� #)�

3=2

�D

3=2

)℄u

n

1

+[(1� #)�

3=2

+ (

1

2

�D

p;3=2

)(

1

2

� (1� #)�

3=2

+D

3=2

)℄u

n

2

+k(

1

2

�D

p;3=2

)R

n

3=2

5 Numerial results

5.1 Introdution

The aim of this setion is to demonstrate the eÆieny of the box-sheme on onvetion-di�usion

problems having sharp ontrasts in the di�usion oeÆients. Let us stress the following points:

�rst, although the box sheme designed in the preeding setion is only �rst order aurate

for high Pelet numbers,(see(61)), the observed auray is greater than 1 in ertain ases.

Seond, the box sheme provides simultaneously approximations of both u and of the gradient

u

x

, allowing higher order reonstrutions in u. This kind of reonstrution is not studied further

here. Finally, the main interest of the box sheme is that the same priniple holds for onvetion

equations and for the onvetion-di�usion equation. This is not the ase in the lassial �nite

volume methods where di�erent numerial ux formulas are used depending on the nature of

the ux, onvetive or di�usive. Let us stress �nally that the parameters of the sheme are used

in pratie loally in eah box, if the mesh is irregular.

5.2 Monodimensional test-ases

5.2.1 First test-ase

We ompare the numerial solution of the onstant oeÆient onvetion-di�usion problem de-

�ned on the half line, x > 0.

(70)

8

<

:

u

t

+ u

x

� "u

xx

= 0; x > 0;  2 R; " > 0

u (x; 0) = 0; x > 0

u (0; t) = 1; u (+1; t) = 0:

The exat solution is

(71) u(x; t) =

1

2

�

erf(

x� t

2

p

"t

) + exp(

x

"

) erf(

x+ t

2

p

"t

)

�

We have plotted in Fig. 1, Fig. 3 and Fig. 5, the exat and omputed solutions (u; u

x

) with

the box sheme (34) at time T = 0:4 with a 200 box irregular mesh. The di�usion oeÆients

are respetively " = 0:02; 0:005; 0:001 and the veloity is  = 1. We plot in addition in Fig. 2,

Fig. 4 and Fig. 6, the loal Pelet number Pe

j�1=2

, whih varies strongly, due to the irregularity

of the mesh. In the �rst two ases, the results are very good. As expeted, we observe a very

good agreement between the exat solution and the omputed solution in the two �rst ases.

13



The parameters of the box-sheme are #

j�1=2

= 0:55, D

p;j�1=2

=

1

2

sgn()max(0; 1 �

1

Pe

j�1=2

),

D

u;j�1=2

=

1

2

sgn()max(0;

1

Pe

0

�

1

Pe

j�1=2

) with a threshold Pelet number Pe

0

= 2:5, see (61). In

the last ase, " = 0:001, we have a onvetion dominated ase and the sheme begins to show a

lak of auray, partiularly for the gradient u

x

. On Table 1, we display the onvergene rates

obtained for u and the di�usive ux p = �"u

x

in eah of the three ases " = 0:02, " = 0:005

and " = 0:001. This rate is the L

2

onvergene rate � where ju� u

h

j

L

2

[0;1℄

� Ch

�

. We display

the onvergene rate estimated for the pair of meshes 50=100 boxes and 100=200 boxes. The

results are very good in the three ases. Note that in the third ase, the Pelet number begins

to be loated above the threshold Pelet number, ausing the box-sheme to have a stronger

arti�ial di�usion (upwind parameter D

u

). However, the onvergene rates are still good for u

and p = �"u

x

. If we selet a smaller di�usion oeÆient ", the sheme shows, as does every �rst

order sheme, a more notieable lak of auray. A less rude tuning than (60), (61), will be

presented in future works, [12℄.

Di�. oe�t. Conv. rate (u), 50/100 and 100/200 Conv. rate (p = �"u

x

), 50/100 and 100/200

" = 0:02 1.57, 1.38 1.68, 1.11

" = 0:005 1.68, 1.40 1.29, 1.25

" = 0:001 0.90, 1.78 0.61, 1.90

Table 1: Table of onvergene rate for the �rst test ase (70)

5.2.2 Seond test-ase

In this seond test ase, we demonstrate that the apabilities of the box sheme are poten-

tially very good on \real" problems, namely ones where sharp ontrasts our in the di�usion

oeÆients. The test ase onsists of the following onvetion-di�usion equation, [14℄

(72)

8

<

:

u

t

+ u

x

� ("(x)u

x

)

x

= 0 x 2 [0; 1℄

u (x; 0) = 0; x 2℄0; 1℄

u (0; t) = 1; u (1; t) = 0

where the di�usion oeÆient is "(x) =

8

>

>

>

>

<

>

>

>

>

:

10

�6

0 < x < 0:15

1 0:15 < x < 0:25

10

�3

0:25 < x < 0:35

10

�1

0:35 < x < 0:45

1 0:45 < x < 1

We display in Fig. 7 through 12 the values of u(x) (irles), p(x) = �"u

x

(straightlines) at the

6 times T

1

= 0:084, T

2

= 0:175, T

3

= 0:238, T

4

= 0:35, T

5

= 0:525 and T

6

= 1:519. The mesh

is irregular (a �nite-volume mesh) in order to prove that the sheme works like a �nite volume

sheme. The value of the time integration parameter is # = 0:5. We have 100 boxes. The

parameters D

u;j�1=2

, D

p;j�1=2

are seleted independently in eah box aording to (60), (61).

The threshold Pelet number in (60) has been �xed at Pe

0

= 2:5. The most interesting point is

that there is no numerial dispersion, and that the pro�les are perfetly monotoni. However,

note that one an hek numerially, the sheme does not formally satisfy a maximum priniple:

dispersive osillations an our during a very short transient elapse of time at the beginning of

14



the omputation. In all our omputations, this problem an be avoided if neessary

1

by simply

foring u

n+1

j

to belong to the physial interval of admissibility.

In Table 2, we give the onvergene rates in the L

2

norm, for u and the di�usive ux p = �"u

x

at the six times T

k

, 1 � k � 6. The exat solution is taken to be the numerial solution obtained

with a 1024 point mesh. We report in Table 2 the onvergene rates between a mesh of 50 boxes

and 100 boxes on one hand, and between a mesh of 100 and 200 boxes on the other hand. As

expeted from the equivalent equation analysis, the sheme is �rst order aurate for u and for

p. This is better than a standard �rst order non mixed upwind sheme, in whih there is no

simultaneous omputation of the di�usive ux. Note that a mesh of 100 or 200 boxes is a small

mesh for suh a ase.

Time Conv. rate (u), 50/100 and 100/200 Conv. rate (p = �"u

x

), 50/100 and 100/200

T

1

= 0:084 0.65, 0.74 6.48, 4.83

T

2

= 0:175 1.06, 0.89 0.94, 0.76

T

3

= 0:238 1.17, 0.96 1.60, 0.98

T

4

= 0:350 1.41, 0.99 1.55, 1.15

T

5

= 0:525 1.63, 0.96 1.25, 1.00

T

6

= 1:519 1.58, 0.94 1.58, 0.94

Table 2: Table of onvergene rates for the seond test ase (72)

5.3 2D problems

5.3.1 Introdution

In this part, we solve a onvetion di�usion problem with our ADI box sheme for two aademi

examples. In all ases, the time integration parameter # =

1

2

. The upwind oeÆients in the

diretions x and y are D

u;x

; D

p;x

and D

u;y

; D

p;y

. They are omputed by the 1D formulas

(73)

8

>

>

>

>

<

>

>

>

>

:

D

p;x;j�1=2

=

1

2

sgn(

1

)max(0; 1�

1

Pe

x;j�1=2

)

D

u;x;j�1=2

=

1

2

sgn(

1

)max(0;

1

Pe

0

�

1

Pe

x;j�1=2

)

D

p;y;j�1=2

=

1

2

sgn(

2

)max(0; 1 �

1

Pe

y;j�1=2

)

D

u;y;j�1=2

=

1

2

sgn(

2

)max(0;

1

Pe

0

�

1

Pe

y;j�1=2

)

where ~(

1

; 

2

) is the veloity and Pe

x;j�1=2

, Pe

y;j�1=2

are the edge Pelet numbers in the x and

y diretions.

5.3.2 Test-ase of Noye and Tan

We onsider the test proposed in [21℄ whih onsists of the deplaement of a 2D Gaussian pulse,

initially entered at (x

0

; y

0

) = (0:5; 0:5), and propagated by the onvetion-di�usion equation

u

t

+ :ru� ("

1

u

xx

+ "

2

u

yy

) = 0

1

This is the ase for example, for the omputation of quantities like onentrations or temperature that should

belong to a �xed interval.
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along the diagonal of the square 
 = [0; 2℄

2

, during 1:25 seonds. The Dirihlet boundary

onditions are the values of the exat solution on the boundary. The di�usion oeÆients are

"

1

= "

2

= 0:01, and the veloity is ~ = (0:8; 0:8). The exat solution of this problem is given by

g(x; y; t) =

1

4t+ 1

exp

�

�

(x� 

1

t� x

0

)

2

"

1

(4t+ 1)

�

(y � 

2

t� y

0

)

2

"

2

(4t+ 1)

�

We ompare our results with those of Turner and Trusott [27℄. The error at time t

0

is the mesh

dependent error denoted by e

TT

(t

0

), de�ned by

(74) e

TT

(t

0

) =

1

N

x

N

y

v

u

u

t

P

N

x

i=1

P

N

y

j=1

(u(i; j) � g(x(i); y(j); t

0

))

2

P

N

x

i=1

P

N

y

j=1

u(i; j)

2

;

where N

x

and N

y

are respetively the number of horizontal and vertial nodes. The numerial

solution is omputed on three di�erent regular meshes:

- a oarse mesh of 961 nodes (31 points along x and y axis) (mesh 1).

- a medium mesh of 4096 nodes (64 points along x and y axis) (mesh 2).

- a �ne mesh of 10201 nodes (101 points along x and y axis) (mesh 3).

The oarse mesh (mesh 1) is seleted to obtain a Pelet number Pe � Pe

0

= 2:5 giving that the

upwind oeÆient D

u

is not equal to zero. In ontrast, D

u

= 0 for the two last meshes, mesh

2 and mesh 3, used by Turner and Trusott. We ompare the peak level and the quantity e

TT

at �nal time T = 1:25, with the values obtained by a Control Finite Volume Method used by

Turner and Trusott on meshes 2 and 3. We subsript the results with the su�xes Box for the

box sheme, and TT for the Turner and Trusott sheme. Additional results are given in the

ase of the ADI box-sheme. These results are presented in Table 3. The peak height of the

exat solution is 1 at T = 0, and 1=6 ' 0:1667 at the �nal time T = 1:25.

Mesh size mesh 1 mesh 2 mesh 3

Pelet number 2.6667 1.2698 0.8

Box peak height 0.1452 0.1636 0.1660

TT peak height 0.1382 0.1518

Box e

TT

2.2727073e-4 1.0844153e-5 9.4819593e-7

TT e

TT

4.975446e-5 1.424502e-5

Box L

2

error 0.0103 2.2239e-3 4.9213e-4

L

2

Conv. rate 2.0661 3.2644

Table 3: Comparison between the �nite volume method and the ADI-box-sheme

The ADI box-sheme gives good results, in omparison with those of Turner and Trusott.

For this problem, the rate of the L

2

error is 2 when measured between mesh 1 and mesh 2 and

around 3 when measured between mesh 2 and mesh 3. Here, we display results for the veloity u

only. Note that one ould use the value of the gradient to enhane the auray of the solution.

We have plotted in Fig. 13 and Fig. 14, the exat solution at the initial and �nal times and in

Fig. 15 through Fig. 18, the solutions omputed with mesh 1 and mesh 3. The two last �gures,
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Fig. 19 and Fig. 20 display the di�erene between the exat and the solutions omputed with

mesh 1 and mesh 3. Fig. 17 and Fig. 19 show the dissipation and dispersion of the sheme at

low level spatial resolution in the ross diretion x = y.

5.4 Test-ase of Balaguer et al.

The seond test is given by Balaguer et al. [1℄. We ompute the numerial solution of the

following equation

(75) u

t

+ (v

0

+ �y)u

x

�D(u

xx

+ u

yy

) = 0

with Dirihlet boundary onditions given by the exat solution

(76) u(x; y; t) =

�M

4�Dt(1 + �

2

t

2

=12)

exp(�

(x� �x� 0:5�yt)

2

4Dt(1 + �

2

t

2

=12)

�

y

2

4Dt

);

where v

0

is the veloity on y = 0, � is the slope of the veloity pro�le andD is a positive onstant.

�M is a point soure of mass at x = x

0

; y = 0 and t = 0. �x is de�ned by �x = x

0

+ v

0

t. We take

the omputational domain 
 = [�20000; 20000℄ � [�2000; 2000℄, the initial time t

ini

is equal to

t

ini

= 2400, �M = 4�Dt

ini

(1 + �

2

t

2

=12)

1=2

so that the initial peak onentration is equal to 1.

We take the following parameters : x

0

= 7200; v

0

= 0:5; � = 5�10

�5

; D = 10. In the two �rst

ases, the spatial step size is h = h

x

= h

y

= 200, (resp. 100) and the CFL number is 0:24. We

ompute the solution during a time interval of 2400. The �nal time is t

final

= 4800. The �nal

peak height of the exat solution is 0:4991.

Note that the veloity (

1

; 

2

) = (v(y); 0) is nonsymmetri, whith v(y) = v

0

+ �y. The initial

Mesh size mesh 1 mesh 2 mesh 3

h 200 100 50

Nx 201 401 801

Ny 21 41 81

time step 80 40 20

Peak height 0.3643 0.4793 0.4955

L

2

error 59.5037 20.8254 4.6216

onvergene rate 1.5146 2.1719

Table 4: Computed results at �nal time T=4800 for meshes 1,2 and 3 on Balaguer's et al. test

ase.

pulse is onveted in the x-diretion only. The Pelet number along x, Pe

x

=

j

1

jh

x

2"

is non-

onstant. One has 4 � Pe

x

� 6 in the ase h = 200, and 2 � Pe

x

� 3 in the ase h = 100. In

this last ase, the upwind oeÆient D

u;x

varies on eah horizontal edge between 0 and 1=30.

The vertial oeÆients Pe

y

and D

u;y

vanish everywhere.

In a third ase, we take a spatial step-size of h = 50. The upwind oeÆient D

u

vanishes

eveywhere. The onvergene rates are between 1:5 and 2. We have plotted some numerial

results in Fig. 21 through Fig.24.
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6 Conlusion

In this work, we have foused on the basi design of a mixed box-sheme for 1D onvetion-

di�usion equations. We stress that the design is the same in hyperboli or paraboli regions. The

sheme has a pratial auray depending on the value of the loal Pelet number. Here, the

tuning of the upwind parameters is independent of the loal behaviour of the solution. Future

work will be devoted to the study of nonlinear ontrol of the upwind oeÆients D

u

, D

p

, in order

to detet and prevent dispersive osillations [12℄. In addition, the extension to 2D problems with

irregular meshes is in progress.

Aknowledgements: The authors thank gratefully J. Roberts for her interest and onstrutive

ritis on this paper.
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dynamique des gaz monodimensionnelle, La Reherhe A�erospatiale, n

Æ

5, 1991, pp 31-44.

[9℄ B. Courbet, J.P. Croisille, Finite Volume Box Shemes on triangular meshes, Math.

Model. and Numer., 32,5, (1998), 631-649.

[10℄ J-P. Croisille, Finite Volume Box Shemes and Mixed Methods, Math. Model. and Nu-

mer., 34, 5, 2000, 1087-1106.

[11℄ J-P. Croisille, Keller's box-sheme for the one-dimensional stationary onvetion-

di�usion equation, Computing, 68, 2002, 37-63.

[12℄ J-P. Croisille, A high order aurate box-sheme for the one dimensional onvetion-

di�usion equation, Preprint 2002, Laboratoire de math�ematiques de Metz.

[13℄ J-P. Croisille, I. Greff, Some box-shemes for ellipti problems, Numer. Meth. Partial

Di�. Equations, 18, 2002, 355-373.

[14℄ J-P. Croisille, I. Greff, A box sheme for onvetion-di�usion equations, Pro of the

3. ISFVMCA, Porquerolles, Hermes, 2002.

[15℄ J. Douglas, J.E. Gunn A general formulation of alternating diretion methods; Part I.

Paraboli and hyperboli problems, Num. Math, 6, 1964, 428-453.

[16℄ J. Douglas, H.H. Rahford On the numerial solution of heat ondution problems in

two and three spae variables. Trans. of the Amer. Math. So, 82 1956, 421-439.

19



[17℄ G.W. Hedstrom, Models of di�erene shmes for u

t

+ u

x

= 0 by partial di�erential

equations, Math. of Comp., 29, 132, 1975, 969-977.
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Figure 1: Solution of problem (70), T = 0:4,

" = 0:02
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Figure 2: Loal Pelet number of problem (70),

T = 0:4, " = 0:02
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Figure 3: Solution of problem (70), T = 0:4,

" = 0:005
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Figure 4: Loal Pelet number of problem (70),

T = 0:4, " = 0:005
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Figure 5: Solution of problem (70), T = 0:4,

" = 0:001
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Figure 6: Loal Pelet number of problem (70),

T = 0:4, " = 0:001
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Figure 7: Problem (72), Time=T
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Figure 8: Problem (72), Time=T
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Figure 9: Problem (72), Time=T
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Figure 10: Problem (72), Time=T
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Figure 11: Problem (72), Time=T

5

, 100 boxes

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.2

0.4

0.6

0.8

1

temps=1.5193   u: oooo   p=−kdiff*u
x
: −−−−

Figure 12: Problem (72), Time=T
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Figure 13: Initial exat solution
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Figure 14: Final exat solution
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Figure 15: Computed solution for 31 points at

�nal time T = 1:25.
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Figure 16: Computed solution for 101 points at

�nal time T = 1:25.
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Figure 17: Diagonal plots of exat solution u :

o and omputed solution u

h

: �, for 31 pts at

T = 1:25.
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Figure 18: Diagonal plots of exat solution u :

o and omputed solution u

h

: �, for 101 pts at

T = 1:25.
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Figure 19: Error between exat and omputed

solutions for 31 points.
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Figure 20: Error between exat and omputed

solutions for 101 points.
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Figure 21: Initial ontour plot, h = 100
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Figure 22: Computed ontour plot, h = 100
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Figure 23: Cross setion in x=9600, h = 100
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Figure 24: Cross setion in y=0, h = 100
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