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Analysis and simulation of a coupled hyperbolic/parabolic
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Abstract — We investigate a periodic one-dimensional degenerate advection-diffusion equation. The
problem is hyperbolic in a subinterval and parabolic in the complement, and the boundary conditions
only impose the periodicity of the advective-diffusive flux to ensure mass conservation. Following
Gastaldi and Quarteroni (1989), an additional condition is enforced to select the “physically accept-
able” solution as the limit of vanishing viscosity solutions, namely the continuity of the solution at the
parabolic to hyperbolic interface. Using this condition, we establish the well-posedness of the Cauchy
problem in the framework of the evolution linear semi-groups theory. We also discuss the regularity
of the solution when the initial condition is too rough to be in the domain of the evolution operator.
Then, we present a suite of reference solutions for various sets of data. This solutions can be used to
assess the robustness of numerical schemes. In particular, we present results obtained with a simple
upwind scheme, a finite volume box-scheme, and the local discontinuous Galerkin method. The three
schemes select automatically the physically acceptable solution, the latter two offering a much sharper
resolution of the solution profiles.

Keywords: Hyperbolic/parabolic, interface conditions, semigroup theory, finite elements, finite vol-
umes, box-schemes

1. INTRODUCTION

The main motivation for this work is to analyze the advection-diffusion of a scalar
variable u(t,x) in a medium having strong heterogeneities. Our aim is to address
an evolution problem that changes spatially its mathematical character, namely hy-
perbolic in some parts of the domain and parabolic in the other parts. The model
evolving u(t,x) is an advection-diffusion equation in the form

∂tu+ ∂xF (x,u,∂xu) = f , (1.1)

with source term f and the flux

F (x,u,∂xu) = βu−α(x)∂xu. (1.2)
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In (1.1)–(1.2), the advection velocity β is solenoidal. The diffusion coefficient α(x)
allows to switch between a purely advective equation (α(x) = 0) and an advection-
diffusion equation (α(x) > 0). In applications, the variable u(t,x) can mimic for
instance any type of pollutant concentration in geological layers.

As a model problem, we investigate a 2-periodic setting in one space dimension.
Let Ω = (0,2), ΩP = (0,1), and ΩH = (1,2). The advection velocity is taken con-
stant equal to 1; the diffusion coefficient is given by α(x) = α0 > 0 for x ∈ ΩP (the
parabolic zone) and α(x) = 0 for x ∈ ΩH (the hyperbolic zone). We investigate the
following Cauchy problem:

{

∂tu+ ∂xF (x,u,∂xu) = f x ∈ Ω, t > 0,

u(t = 0, ·) = u0 x ∈ Ω,
(1.3)

with advective-diffusive flux

F (x,u,∂xu) =

{

u−α0 ∂xu x ∈ ΩP,

u x ∈ ΩH .
(1.4)

To specify boundary conditions, a minimal requirement for the solution to (1.3) to
be extendable by 2-periodicity as a weak solution to (1.1) on the whole real line is
the continuity of the flux F at any interface where the diffusion coefficient α(x) is
discontinuous. This property holds in particular at 1−/1+ (transition from parabolic
to hyperbolic zone) and at 2−/0+ (transition from hyperbolic to parabolic zone),
yielding

{

u(1−, t)−α0∂xu(1−, t) =u(1+, t),

u(0+, t)−α0∂xu(0+, t) =u(2−, t).
(1.5)

The continuity of the flux is physically important since it expresses mass conserva-
tion. In contrast, no continuity conditions are imposed a priori on the solution u at
the interfaces. The goal of this paper is twofold. First we present a mathematical set-
ting in which (1.3)–(1.4)–(1.5) is well-posed. Second, we give reference solutions
computed numerically for various sets of data u0, f , and α0 in order to provide an
interesting benchmark test suite.

Concerning the mathematical setting, it is important to observe that Prob-
lem (1.3)–(1.4)–(1.5) is ill-posed in the sense that it admits many solutions. To
illustrate this point, consider the case of a null initial condition, u0 = 0, and null
source term, f = 0. Consider any smooth function of time ϕ : R

+ → R such that

ϕ (n)(0) = 0 for all n > 0 (for example ϕ(t) = α exp(−β/t) with two constants α
and β > 0). Impose the flux at x = 1 by settingF (t,1) = ϕ(t). One can easily show
that the flux at x = 2 is a smooth function of time given byF (t,2) = ϕ(t −1)1t>1.
Moreover, there exists a smooth solution to the following parabolic problem on
(0,1) with Robin boundary conditions:















∂tu+ ∂xu−α0 ∂xxu = 0 (t,x) ∈ [0,∞)× (0,1),
(

u−α0 ∂xu
)

(t,1) = ϕ(t), t ∈ [0,∞),
(

u−α0 ∂xu
)

(t,0) = ϕ(t −1)1t>1, t ∈ [0,∞),

u(0,x) = 0, x ∈ (0,1),

(1.6)
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from which it is straightforward to build a nonzero smooth solution to (1.3)–
(1.4)–(1.5) with data u0 = 0 and f = 0. Thus, an additional condition has to be
specified to recover uniqueness, i.e., to select the unique “physically acceptable”
solution. This difficulty has been analyzed in [9] for one-dimensional coupled
parabolic/hyperbolic problems using vanishing viscosity techniques. It results from
this study that the physically acceptable solution is continuous at the interface where
the flow leaves the parabolic zone to enter the hyperbolic one, whereas no continuity
condition holds a priori at the other interface. In Section 2, we make clear that this
additional condition is indeed needed to derive an existence and uniqueness result in
the framework of the evolution linear semi-groups theory; see [2,12]. In particular,
we prove that the evolution operator associated with (1.3) is maximal and mono-
tone provided its domain is restricted to those functions that are continuous at the
parabolic to hyperbolic interface. We also discuss the regularity of the solutions to
(1.3)–(1.4)–(1.5) when the initial condition is too rough to be in the domain of the
evolution operator.

Concerning the numerical results, we stress that a robust scheme should find
“automatically” the physically acceptable solution, i.e., the continuity of the solu-
tion at the parabolic to hyperbolic interface should not be explicitly enforced by
the scheme. To assess the schemes, reference solutions are computed for various
data sets (initial condition, diffusion coefficient, and source term) using a problem-
specific scheme described in Section 3. In each case, we present solution profiles at
different times and various functionals of the solution allowing to characterize the
properties of the schemes to be tested. Of particular interest are the total energy and
the value of the jump at the interface 2−/0+, both as a function of time. In Section 4,
these reference results are used to assess on relatively coarse meshes the robustness
and accuracy of various schemes: a simple upwind scheme, a box-scheme intro-
duced in [7], and a locally discontinuous Galerkin method derived in [3]. All of
them capture the physically correct solution.

2. MATHEMATICAL ANALYSIS

The goal of this section is twofold. First we clarify the importance of the continuity
of the solution at the parabolic to hyperbolic interface in the framework of the evo-
lution linear semi-groups theory. Second we discuss the regularity of the solutions
to the evolution problem when the initial condition is too rough to be in the domain
of the evolution operator.

2.1. Evolution linear semi-groups theory

Without loss of generality, we assume in this section that α0 = 1. To alleviate the no-
tation, the flux given by (1.4) is denoted byF (u) instead ofF (x,u,∂xu). For a func-
tion v which is smooth in ΩP ∪ΩH , we introduce the jumps [v(1)] = v(1+)− v(1−)
and [v(2)] = v(0+)−v(2−). For functions only depending on the space variable, dis-
tributional derivatives are denoted by a subscript x. For a region R ⊂ Ω, the L2(R)-



4 J.-P. Croisille, A. Ern, T. Lelièvre, J. Proft

inner product is denoted by (·, ·)R. Let P(Ω) be the space of 2-periodic functions

in C ∞(Ω) and let H1
per(Ω) be the closure ofP(Ω) for the H1-norm. Let

V = { v ∈ H2(ΩP)∩H1(ΩH), [F (v)(1)] = [F (v)(2)] = [v(1)] = 0 }, (2.1)

and consider the operator A : D(A) ≡V → L2(Ω) defined by

Av = (F (v))x. (2.2)

Theorem 2.1. The operator A : V → L2(Ω) is the infinitesimal generator of a

continuous semigroup of contractions T (t) : L2(Ω) → L2(Ω), 0 6 t < ∞.

Proof. We use the Lumer–Phillips criterion [12, p. 14], i.e., we establish that A
is monotone and maximal; see Lemmas 2.1 and 2.2 below. �

Corollary 2.1. For all u0 ∈ D(A) and f ∈C1([0,∞[;L2(Ω)), the evolution prob-
lem

{

du
dt

+ Au = f ∀t ∈ [0,∞[,

u(0) = u0,
(2.3)

admits a unique solution u ∈C1([0,∞);L2(Ω))∩C0([0,∞);D(A)). This solution sat-
isfies the a priori estimates

‖u(t)‖Ω 6 ‖u0‖Ω and ‖du
dt
‖Ω 6 ‖Au0‖Ω, ∀t ∈ [0,∞[. (2.4)

Proof. See, e.g., [12, p. 102]. �

Lemma 2.1. The operator A is monotone:

∀v ∈ D(A), (v,Av)Ω > 0. (2.5)

Proof. Using integration by parts and the periodicity of the flux at points x = 1
and x = 2, we infer for all v ∈ D(A) that

(v,Av)Ω =
∫ 1

0 v(F (v))x dx+
∫ 2

1 v(F (v))x dx

= −∫ 2
0 vxF (v)−F (v)(1)[v(1)]+F (v)(2)[v(2)]

=
∫ 1

0 (vx)
2 dx+ 1

2
[v2(1)]− 1

2
[v2(2)]− v(1+)[v(1)]+ v(2−)[v(2)]

=
∫ 1

0 (vx)
2 dx+ 1

2
[v(2)]2 − 1

2
[v(1)]2.

Since v ∈ D(A), [v(1)] = 0 implying that (v,Av)Ω > 0. �

Lemma 2.2. The operator A is maximal:

∀g ∈ L2(Ω), ∃u ∈ D(A) s.t. u+ Au = g. (2.6)
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Figure 1. A suitable function ψ for the proof of Lemma 2.2.

Proof. Let g ∈ L2(Ω). The solution u to (2.6) is constructed as the vanishing
viscosity limit of a sequence of solution to a regularized problem. Henceforth, c

denotes a generic constant that may depend on g but not on ε .
Step 1. Let ε > 0. For v ∈ H1

per(Ω), defineF ε(v) = v−vx in (0,1),F ε (v) = v−εvx

in (1,2), and Aεv = (F ε (v))x. Clearly, the problem

uε + Aεuε = g, (2.7)

admits a unique solution uε ∈ H1
per(Ω). Multiplying (2.7) by uε yields the following

a priori estimates:

‖uε‖
L2(0,2)

6 c, (2.8)

‖uε‖
H1(0,1)

6 c, (2.9)

√
ε‖uε‖

H1(1,2)
6 c. (2.10)

This implies ‖F ε (uε )‖
L2(0,2)

6 c. Moreover, ‖(F ε (uε ))x‖L2(0,2)
6 c since (2.7)

holds in L2(Ω), and multiplying (2.7) by a smooth 2-periodic function with sup-
port containing the point 2, we infer [F ε (uε)(2)] = 0. Therefore

‖F ε (uε )‖
H1

per(0,2)
6 c. (2.11)

The last important estimate consists in controlling the H1-norm of uε in the neigh-
borhood of x = 1 uniformly in ε . Let 0 < α < 1. There exists a positive function
ψ which is zero on (0,1) and on a neighborhood of 2, equal to one on the interval
[1,1+α ], smooth over (1,2), and non-increasing on the same interval; see Figure 1.
Multiplying (2.7) by uε

x ψ and integrating over (1,2) yields

∫ 2

1
uε uε

x ψ dx+
∫ 2

1
(uε

x)
2 ψ dx− ε

∫ 2

1
uε

xx uε
x ψ dx =

∫ 2

1
f uε

x ψ dx, (2.12)

noticing that all the integrals are well-defined. Integrate by parts the third integral in
the left-hand side to obtain

∫ 2

1
uε

xx uε
x ψ dx = −1

2

∫ 2

1
(uε

x)
2 ψx dx+

1

2
(uε

x)
2(1), (2.13)
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whence we deduce

∫ 2

1
(uε

x)
2 ψ dx 6 −

∫ 2

1
uε uε

x ψ dx+
ε
2

∫ 2

1
(uε

x)
2 ψx dx+

∫ 2

1
f uε

x ψ dx. (2.14)

Owing to the inequality ab 6 γa2 + 1
4γ b2 valid for all γ > 0, we infer

c

∫ 2

1
(uε

x)
2 ψ dx 6

∫ 2

1
(uε )2 ψ dx+

∫ 2

1
f 2 ψ dx+

ε
2

∫ 2

1
(uε

x)
2 |ψx|dx, (2.15)

whence we deduce using the above a priori estimates that

‖uε‖
H1(1−α ,1+α)

6 c. (2.16)

Step 2. Using estimates (2.8), (2.9), and (2.11), one can extract a subsequence uεn

such that

uεn ⇀ u in L2(0,2), (2.17)

uεn ⇀ u in H1(0,1), (2.18)

F

εn(uεn) ⇀F in H1
per(0,2). (2.19)

Passing to the limit in (2.7), we deduce that u satisfies u + Au = g in D ′(0,1) and

D

′(1,2). Moreover, it is clear that F = u− ux in (0,1). On the interval (1,2), one

has uεn −F εn(uεn) = εnuεn
x . The left-hand side converges to u−F in D ′(1,2) and

the right-hand side converges to 0 in L2(0,1) owing to (2.10). Therefore, F = u in

(1,2). We have thus shown that F =F (u) in Ω, where F (u) is defined by (1.4).

Since F is in H1
per(0,2), we obtain [F (v)(1)] = [F (v)(2)] = 0. Finally, using the

estimate (2.16), we deduce that (up to the extraction of a new subsequence) the limit
u is continuous in a neighborhood of 1. In summary, u ∈ D(A) and u + Au = g in
L2(Ω), which concludes the proof. �

Remark 2.1. Clearly, the solution u to (2.6) is unique since u + Au = 0 and
u ∈ D(A) implies ‖u‖2

L2(Ω)
= 0 owing to the monotonicity of A. Therefore, the op-

erator (I + A) is bijective from D(A) into L2(Ω). Let B : D(B) ≡ W → L2(Ω) be
the extension of A to the space W defined as in (2.1) by omitting the interface con-
dition [v(1)] = 0. Then, one readily verifies that the equation u + Bu = 0 admits
infinitely many solutions in D(B), i.e., the operator (I + B) is not injective from
D(B) to L2(Ω).

Remark 2.2. Since A is monotone and maximal and since L2(Ω) is reflexive,
its domain D(A) is dense in L2(Ω); see, e.g., [12, p. 16]. Moreover, for all λ > 0, the
operator (I +λA) is bijective from D(A) to L2(Ω), (I +λA)−1 is bounded in L2(Ω),
and ‖(I + λA)−1‖

L (L2(Ω))
6 1; see, e.g., [1].



A coupled hyperbolic/parabolic model problem 7

Remark 2.3. The argument in the proof of Lemma 2.2 cannot be used to prove
that the H1-norm of uε is uniformly bounded on a left neighborhood of 2 with the
function ϕ(x) = ψ(3− x). Indeed, after integration by parts, one obtains

−
∫ 2

1
uε

xx uε ϕ dx =
1

2

∫ 2

1
(uε

x)
2 ϕx dx− 1

2
(uε

x)
2(2), (2.20)

and one cannot conclude because of the sign of the last term in the right-hand side.

2.2. Rough initial data

In this section we construct a weak solution to the evolution problem (1.3)–(1.4)
when the initial condition u0 is too rough to be in the domain of A, e.g., u0 ∈ L2(Ω)
only. We limit ourselves to the homogeneous case, f ≡ 0. Our main result is that
under some assumptions, once the initial condition has crossed the whole hyperbolic
zone, i.e., at time t > 1, the solution we construct is smooth enough to be in D(A).

Let Y = L∞((0,∞);L2(ΩP))∩L2((0,∞);H1(ΩP))∩L2((0,∞);L2(ΩH)). To con-
struct a weak solution to (1.3)–(1.4) in Y , one proceeds as follows. First solve the
mixed Robin–Neumann problem: Seek u∈ L∞((0,∞);L2(ΩP))∩L2((0,∞);H1(ΩP))
such that uP(t = 0, ·) = u

0|ΩP
and, ∀ϕ ∈ H1(ΩP) and a.e. in t,

(∂tuP,ϕ)ΩP
− (uP −∂xuP,∂xϕ)ΩP

+ uP(t,1)ϕ(1) = ψ(t)ϕ(0), (2.21)

where

ψ(t) =

{

u0(2− t) if t < 1,

uP(t −1,1) if t > 1.
(2.22)

One readily checks that Problem (2.21) is well-posed. The unique solution uP solves
the evolution equation (1.3)–(1.4) inD ′((0,∞)×ΩP) and satisfies weakly the Robin
conditionF (u)(t,0) = ψ(t) and the Neumann condition ∂xuP(t,1) = 0. Second, use
the value uP(1, t) to feed the advection equation

∂tuH + ∂xuH = 0, in D ′((0,∞)×ΩH). (2.23)

Then, set u|ΩP
= uP and u|ΩH

= uH . It is clear that u ∈ Y , u is a weak solution to

(1.3)–(1.4) in D ′((0,∞)×Ω), u is continuous at x = 1, and the flux F (u) satisfies
weakly the interface conditions. The condition at the interface 2−/0+ results from
the Robin condition and the fact that uH(t,2) = uP(t − 1,1) whereas the condition
at the interface 1−/1+ results from the homogeneous Neumann condition and the
fact that the solution u is continuous at x = 1. Furthermore, it is clear that there is a
unique u ∈ Y satisfying the above properties.

To obtain stronger regularity results on the solution u ∈Y constructed above, we
slightly restrict the class of initial conditions. The proofs below are only sketched
since they use well-known techniques based on energy estimates; see, e.g., [11,13].
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Lemma 2.3. Let u0 ∈ H1(Ω)∩H2(ΩP). Then, the solution u ∈ Y constructed

above is in C1((0,∞);L2(Ω))∩C0((0,∞);D(A)).

Proof. Since u0 ∈ H1(ΩH), we infer ψ ∈ H1(0,1) in time. Testing the time-
derivative of (2.21) by ∂tuP (this can be justified rigorously by first working in finite
dimension and then passing to the limit; see, e.g., [11, p. 80]) yields

1

2

d

dt
‖∂tuP‖2

ΩP
+‖∂xtuP‖2

ΩP
− (∂tuP,∂xt uP)ΩP

+(∂tuP(t,1))2 = ψ ′(t)∂tuP(t,0).

(2.24)
Using Young’s inequality to hide the third term in the left-hand side and the right-
hand side, dropping the fourth term, and then using a Gronwall’s Lemma, we infer,
for all 0 < T < 1,

‖∂tuP(T, ·)‖2
ΩP

+
∫ T

0 ‖∂xt uP‖2
ΩP

dt 6 c(‖ψ‖2
H1(0,1)

+‖∂tuP(0, ·)‖2
ΩP

). (2.25)

To prove that the last term in the right-hand side is controlled, one works in finite
dimension and uses the fact that u0 ∈H1(Ω)∩H2(ΩP). To sum up, we obtain ∂tuP ∈
L∞((0,∞);L2(ΩP))∩ L2((0,∞);H1(ΩP)). As a result, t 7→ uP(t,x = 1) is in H1 in
time; hence, uH(t, ·) is smooth for t > 0, and therefore, u(t, ·) is in D(A) for t > 0. We
conclude using the uniqueness of the solution given by the evolution semi-groups
theory. �

Proposition 2.1. Let u0 ∈ L2(ΩP) ∩ L2(ΩH). Then, the solution u ∈ Y con-

structed above is in C1((1,∞);L2(Ω))∩C0((1,∞);D(A)). Moreover, for 0 < t 6 1,

u is a strong solution to (1.3)–(1.4) except on the line x = 1 + t, and the matching
conditions on the flux and on the solution hold strongly for t ∈ (0,1).

Proof. First observe that for an arbitrarily small time ε , uP(ε , ·) is in H1(ΩP).
Testing (2.21) by ∂tuP (this can be justified rigorously; see, e.g., [13, p. 370]) and
proceeding as in the previous proof, one can prove that, for ε < T < 1,

‖uP(T, ·)‖2
H1(ΩP)

+
∫ T

ε ‖∂tuP(t, ·)‖2
ΩP

dt 6 c(‖uP(ε , ·)‖2
H1(ΩP)

+
∫ T

ε ψ(t)2 dt), (2.26)

whence we deduce uP ∈ L∞((ε ,1);H1(ΩP))∩H1((ε ,1);L2(ΩP)). It is then straight-

forward to show that for an arbitrarily small time ε , u(ε , ·) ∈ H1(Ω)∩H2(ΩP). Us-
ing u(ε , ·) as an initial condition and reasoning as in the proof of Lemma 2.3, we
infer that ∂tuP ∈ L∞((ε ,1);L2(ΩP))∩L2((ε ,1);H1(ΩP)). It is then clear that u(1, ·)
is in H1(Ω)∩H2(ΩP), showing that u ∈C1((1,∞);L2(Ω))∩C0((1,∞);D(A)). The
case t ∈ (0,1) is straightforward. �

Remark 2.4. Assume that u0 is continuous at x = 1 and is piecewise H1 in ΩH ,

i.e., there exists a finite sequence 1 < t1 < · · · < tN < 2 such that u−ΩH
∈ H1(1, t1)∪

·· ·∪H1(tN ,1). Then, the solution u ∈Y constructed above is in C1((t∗,∞);L2(Ω))∩
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C0((t∗,∞);D(A)) where t∗ = 2− t1 is the time for which the last singularity in u0
has crossed ΩH . See test cases 2 and 3 in Section 3.2.

Remark 2.5. Let uε be the time-dependent solution of the evolution problem
in which a small diffusion coefficient ε is added in ΩH . Then, if u0 ∈ H2(Ω), one
can show that uε converges to u ∈ Y , the weak solution constructed above, at least
in the distribution sense. This justifies the fact that the continuity condition for the
solution at x = 1 can be captured by a vanishing viscosity technique.

3. REFERENCE SOLUTIONS

This section presents reference solutions for the evolution problem (1.3)–(1.4)–(1.5)
for various sets of data. Reference solutions are obtained computationally using a
problem-specific scheme with built-in interface condition.

3.1. A scheme with built-in interface condition

The idea is to use continuous piecewise-linear finite elements to discretize the
advection-diffusion equation in ΩP and to use exact integration along character-
istics to solve the purely advective equation in ΩH . To simplify the presentation, we
assume that the source term f is identically zero on ΩH . The scheme can be easily
extended to the general case by appropriate integration in time along the character-
istics.

Let u solve (1.3)–(1.4)–(1.5) and let ϕ1(t) = F (u)(t,1) be the yet unknown
flux at point x = 1. Since u(t,1+) = ϕ1(t), the purely advective equation can be
integrated exactly on ΩH to yield the flux at point x = 2:

ϕ2(t) = u(t,2−) =

{

u0(2− t) if t 6 1,

ϕ1(t −1) if t > 1.
(3.1)

Using the periodicity of the flux, we infer that the restriction of the solution u to
the parabolic subdomain ΩP satisfies the following evolution problem with Robin
boundary conditions:















∂tu+ ∂xu−α0 ∂xxu = f (t,x) ∈ [0,∞)× (0,1),
(

u−α0 ∂xu
)

(t,1) = ϕ1(t) t ∈ [0,∞),
(

u−α0 ∂xu
)

(t,0) = ϕ2(t) t ∈ [0,∞),

u(0,x) = 0 x ∈ (0,1).

(3.2)

LetMP = ∪NP

j=1
[x j,x j+1] be a mesh of ΩP. Denote by VP the space spanned by con-

tinuous piecewise-linear functions on this mesh. The finite element approximation
to (3.2) consists of seeking uh ∈C1([0,∞[;VP) such that ∀vh ∈VP and t > 0,

d
dt

(uh,vh)ΩP
− (F (uh),vh,x)ΩP

+ ϕ1(t)vh(1)−ϕ2(t)vh(0) = ( f ,vh)ΩP
. (3.3)
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Equation (3.3) is discretized in time by an implicit Euler scheme, yielding

1
δ t

(un+1
h

−un
h,vh)ΩP

−(F (un+1
h

),vh,x)ΩP
+ϕ1(t

n+1)vh(1)−ϕ2(t
n+1)vh(0)= ( f ,vh)ΩP

,

(3.4)
where δ t 6 1 is the time step. Owing to (3.1), the flux ϕ2(t

n+1) can be evaluated
explicitly using known values of the initial condition and of the flux ϕ1(t) at pre-

vious time steps. The unknown flux ϕ := ϕ1(t
n+1) is determined by the interface

condition [u(1)] = 0 at time tn+1. Since this jump is an affine function of ϕ , it is
straightforward to determine the correct value for ϕ by evaluating the jump with
two arbitrary trial values for ϕ and using linear interpolation. To sum up, our time-
marching algorithm proceeds as follows:

1. Select two trial values for ϕ and evaluate for each of these values the approx-
imate solution un+1

h
by solving the linear system (3.4).

2. Determine using linear interpolation the correct value of the flux (ensuring
the zero-jump condition) and the corresponding solution un+1

h
.

3.2. Test cases

To illustrate the above algorithm and the physical behavior of the solutions to the
evolution problem (1.3)–(1.4), we consider the following test cases:

• Case 1 (smooth initial data, small diffusion coefficient): α0 = 0.05, f = 0, and

u0(x) = 16x2(1− x)21[0;1](x).

• Case 2 (rough initial data, small diffusion coefficient): α0 = 0.05, f = 0, and
u0(x) = 1[1.;1.25](x).

• Case 3 (rough initial data, large diffusion coefficient): α0 = 1, f = 0, and
u0(x) = 1[1.;1.25](x).

Numerical simulations are performed on the time interval (0,5) using 106 time steps
and a uniform mesh of (0,1) with cell spacing h = 10−3. Figures 2–4 present the
following results:

• The energy E (t) defined as

E (t) =
1

2

∫ 2

0
u(t,x)2 dx+ α0

∫ t

0

(

∫ 1

0
(∂xu(t,x))2 dx

)

dt, (3.5)

and normalized by E (0), and the L∞(Ω)-norm of u, both quantities as a func-
tion of time. We infer from Lemma 2.1 that

∀t > 0,
d

dt
E (t) 6 0. (3.6)
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Figure 2. Reference solution for case 1 (α = 0.05, f = 0, and u0(x) = 16x2(1−x)21
[0;1]

(x)).
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Figure 4. Reference solution for case 3 (α = 1., f = 0, and u0(x) = 1
[1.;1.25]
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• The flux at x = 1 and the jump at x = 2, as a function of time.

• The masses
∫ 1

0 u,
∫ 2

1 u, and
∫ 2

0 u as a function of time. Note that owing to the
periodicity of the flux, the following mass conservation property holds:

∀t > 0,
d

dt

∫ 2

0
u(t,x)dx =

∫ 2

0
f (t,x)dx. (3.7)

• The profiles x 7→ u(t,x) (represented on (0,4) to illustrate periodicity) at times
t = 0, 0.5, 1, 1.5, 2, 2.5, 3, 4, and 5.

For case 1 where the initial data is smooth (see Figure 2), a very small amount of
energy is dissipated. The jump at point x = 2 is initially zero, but takes nonzero
values with peaks in the time interval 1 6 t 6 2 after the initial data has reached
the hyperbolic to parabolic interface. The discontinuity is clearly visible in the bot-
tom left panel of Figure 2. We also observe the homogeneous Neumann condition
∂xuh(t,1

−) = 0 for all t > 0, which is a direct consequence of the flux continuity at
point x = 1 together with the zero-jump condition [uh(1)] = 0.

For case 2 (see Figure 3), the singularities in the initial data appear clearly in the
jump at x = 2. The two peaks in the upper right panel of Figure 3 correspond to the
times when the leading and trailing edge of the wave reach the point x = 2. Once the
initial data has crossed into the parabolic subdomain, it is dissipated and the jump
takes much smaller values. The homogeneous Neumann condition at point x = 1 is
again clearly visible in the solution profiles. Similar conclusions can be drawn for
case 3 (see Figure 4). An important difference for case 3 is the larger amount of
energy dissipation owing to the larger value of the diffusion coefficient. As a result,
the second singularity in the jump is much smaller than for case 2 (0.4 instead of 1).

Convergence tests are presented in Table 1 for case 1. The solution presented in
Figure 2, say uref, is used as a reference to evaluate the errors associated with ap-
proximate solutions obtained on coarser grids and with larger time steps. Let u

hδ t
be

the approximate solution and e = uref −u
hδ t

be the error. We consider the following
measures of the error:

• ‖e(t, ·)‖
L∞(Ω) at times t = 1 and t = 5.

• ‖F‖ℓp(0,5), the error in the flux at point x = 1 for 0 6 t 6 5, for p = 1 and
p = ∞.

• ‖E ‖ℓp(0,5), the error in the energy for 0 6 t 6 5, for p = 1 and p = ∞.

Recall that for a discrete sequence in time v(nδ t)
06nδ t6T

∈R
M with M = ∑06nδ t6T

1,

one can consider the discrete norms ‖v‖
ℓ1(0,T )

= 1
M ∑06nδ t6T

|v(nδ t)| and ‖v‖ℓ∞(0,T ) =

max
06nδ t6T

|v(nδ t)|. The results presented in Table 1 show that the scheme is

second-order in space and first-order in time for the three error measures, in agree-
ment with theoretical predictions.
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‖e(t, ·)‖
L∞(Ω) ‖F‖ℓp(0,5) ‖E ‖ℓp(0,5)

h δ t t = 1 t = 5 p = ∞ p = 1 p = ∞ p = 1

0.02 10−6 1.1e-3 7.4e-4 1.1e-3 4.1e-4 1.6e-4 4.3e-5

0.01 10−6 2.6e-4 1.8e-4 2.6e-4 1.0e-4 4.0e-5 1.1e-5

0.005 10−6 6.4e-5 4.5e-5 6.4e-5 2.5e-5 1.0e-5 2.6e-6

0.02 2×10−5 2.0e-4 1.8e-4 2.2e-4 9.8e-5 1.3e-4 9.3e-5

0.02 10−5 9.3e-5 8.7e-5 1.0e-4 4.7e-5 6.0e-5 4.4e-5

0.02 5×10−6 4.2e-5 3.9e-5 4.5e-5 2.1e-5 3.0e-5 2.0e-5

Table 1. Convergence analysis: h denotes the space step and δ t the time step. The errors in the first
three lines are scaled by 102 and those in the last three lines by 103.

4. RESULTS WITH GLOBAL SCHEMES

This section presents results obtained with schemes in which the continuity of the
solution at the parabolic to hyperbolic interface is not enforced explicitly. We con-
sider a simple upwind scheme, a finite volume box-scheme introduced in [7], and
a local discontinuous Galerkin method derived in [3]. These schemes are able to
select automatically the physically acceptable solution.

4.1. Upwind scheme

To illustrate the numerical results that can be obtained for the evolution problem
(1.3)–(1.4) with a very simple scheme, we consider in this section a continuous
piecewise-linear finite element method on (0,2) with periodic conditions on the so-
lution and with first-order artificial viscosity in the hyperbolic subdomain ΩH . The

mesh is uniform with step size h, and the artificial viscosity is set to ε = h
2
. The

numerical scheme is equivalent to discretizing the spatial derivatives with centered
differences in ΩP and an upwind scheme in ΩH . In both subdomains, time inte-
gration is performed using an implicit Euler scheme without lumping of the mass
matrix. The time step is set to δ t = 10−4. Two meshes of Ω are considered, one with
200 cells and one with 400 cells. The corresponding numerical solutions are termed
the “coarse grid/upwind” solution and the “fine grid/upwind solution.”

Numerical results are presented in Figure 5. For the sake of brevity, we only
show the time evolution of the normalized energy, the L∞(Ω)-norm of the solution,
the flux at x = 1, and the jump at x = 2 estimated by the difference u(t,2)−u(t,2−
h). To facilitate comparisons with the reference solutions, these quantities are plot-
ted using the same scale as in the two upper panels of Figures 2–4. In all cases,
the correct physical behavior is captured, confirming that the vanishing viscosity
solution can capture the physically relevant interface condition on the solution. For
case 1 where the initial data is smooth, the coarse grid/upwind solution, the fine
grid/upwind solution, and the reference solution agree well. Minor discrepancies
between coarse and fine grid solutions are observed in the energy profile. The situa-
tion is different for case 2 where the initial data is rough. Owing to the high level of
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Figure 5. Numerical results obtained with the upwind method: case 1 (top), case 2 (center), and case
3 (bottom). Left panels: normalized energy and L∞(Ω)-norm of the solution; right panels: the flux at
x = 1 and the jump at x = 2.
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dissipation induced by the scheme, significant errors are observed in the energy and
jump profiles even on the fine grid/upwind solution. The singularities in the jump
as the leading and trailing edges of the initial condition leave the hyperbolic sub-
domain to enter the parabolic subdomain are clearly under-resolved. Moreover, the
asymptotic value of the energy (at time t = 5) is underestimated by 28.1% with the
coarse grid/upwind solution and by 19.9% with the fine grid/upwind solution. The
same conclusions hold for case 3 although the diffusion coefficient is larger.

4.2. A highly accurate box-scheme

The box-scheme that we use to simulate the evolution problem is a high order
box-scheme introduced in [7]. Box-schemes, like the Preissmann scheme, are com-
monly used in surface flow simulations (e.g., river flows, dam breaking) as well as
in groundwater flow simulations (e.g., sedimentation, pollutant transport); see [10].

We shortly present the main features of our box-scheme. First, equation (1.3)
is recast in mixed form using the diffusive flux p(x) = −α(x)ux as an auxiliary
unknown. This yields















∂tu+ ∂x(u+ p) = f (t,x) ∈ [0,∞)× (0,2),

p = −α(x)∂xu (t,x) ∈ [0,∞)× (0,2),

(u+ p)(t,0) = (u+ p)(t,2), t ∈ [0,∞),

u(0,x) = u0, p(0,x) = −α(x)u′0(x) x ∈ (0,2).

(4.1)

The viscosity is α(x) = α0 if x ∈ (0,1) and α(x) = 0 if x ∈ (1,2). Let M =
∪N

j=1[x j,x j+1] be a mesh of Ω, δ t be the time step, and set tn = nδ t. Set h
j−1/2

=

x j − x j−1 and introduce the box K
j−1/2

= [x j−1,x j] for 2 6 j 6 N + 1. We assume

that α is constant on each box, and we set α
j−1/2

= α|K
j−1/2

. Taking the mean value

of the first two equations in (4.1) on a box K
j−1/2

yields the following identities

verified by the exact solution:

h
j−1/2

d

dt
(Π0u)| j−1/2

(t)+ [F (x j, t)−F (x j−1, t)] = h
j−1/2

(Π0 f )| j−1/2
(t), (4.2)

h
j−1/2

(Π0 p)| j−1/2
(t) = −α

j−1/2
[u(x j , t)−u(x j−1 , t)], (4.3)

where Π0 denotes the averaging operator on the boxes and F (x j, t) = u(x j, t) +

p(x j, t). The box scheme evolves simultaneously 3 quantities:

• The values un
j and pn

j at the points of the mesh; these values are such that

un
j ≃ u(x j, t

n) and pn
j ≃ p(x j, t

n) = −α(x j)ux(x j, t
n).

• The value ū
j−1/2

in each box K
j−1/2

defined as ūn
j−1/2

≃ 1
h

j−1/2

∫ x j
x j−1

u(x, tn)dx.



18 J.-P. Croisille, A. Ern, T. Lelièvre, J. Proft

Using a ϑ -scheme for the time integration of (4.2) yields

δun
j−1/2 =− 1

h
j−1/2

(Fn
j −Fn

j−1)−
ϑδ t

h
j−1/2

(δun
j +δ pn

j −δun
j−1−δ pn

j−1)+R
n
j−1/2( f ),

(4.4)
where Fn

j = un
j + pn

j andRn
j−1/2

( f )= (1−ϑ)(Π0 f )| j−1/2
(tn)+ϑ (Π0 f )| j−1/2

(tn+1).

In addition, we have introduced the discrete time derivative operator δ such that for

a time discrete sequence (Zn)n>0, we have δZn = Zn+1−Zn

δ t
. The relation (4.4) only

contains the parameter ϑ selected for the time scheme.
The second relation used in the box-scheme expresses the link between the in-

cremental value of δun
j−1/2

and the two values δun
j and δun

j−1. It can be seen as

a local model at the scale of the box K
j−1/2

. We use a model with 3 parameters

consisting of a relaxation scheme in the form [5,7]

(

1

2
+ Dn

U, j−1/2

)

δun
j +

(

1

2
−Dn

U, j−1/2

)

δun
j−1 −δun

j−1/2 =

−
ζ n

j−1/2

δ t
(Mn

E, j−1/2 −un
j−1/2),

(4.5)

where Mn
E, j−1/2

(u) stands for an equilibrium average value defined by

Mn
E, j−1/2(u) =

(

1

2
+ Dn

E, j−1/2

)

un
j +

(

1

2
−Dn

E, j−1/2

)

un
j−1. (4.6)

Finally, we need a local model for (4.2) expressing the closure law for the diffusive
flux p. We use an upwinded quadrature formula in the form

p̄
j−1/2

(t) =
1

2
[p j (t)+ p j−1 (t)]−D

p, j−1/2
(t) [p j (t)− p j−1 (t)]. (4.7)

Equations (4.5) and (4.7) contain 4 parameters in each box K
j−1/2

at each time

tn, which have to be specified: the two upwind parameters, D
U, j−1/2

and D
E, j−1/2

,

arising in (4.5) and (4.6), respectively; a time parameter ζ
j−1/2

for defining the re-

laxation time scale δ t/ζ
j−1/2

in (4.5); and the parameter D
p, j−1/2

for the definition

of the average of the diffusive flux p in (4.7).
The values taken by the four above parameters relies on the numerical analy-

sis presented in [6,7]. It consists, on the one hand, of a time-independent analysis,
allowing to select Dp in a way ensuring a non-oscillating stationary state for the
convection-diffusion equation [6]; on the other hand, of a time-dependent analy-
sis based on the notion of equivalent equation [7]. This allows to define the three
parameters DU , DE , and ζ to achieve a high-order accuracy. Note that the present
box-scheme can be expressed as a 3-point implicit scheme in the incremental values
δun

j . Finally, we stress the fact that the box-scheme is used in both the parabolic and
the hyperbolic subdomains. It has been proved to be accurate in all Peclet regimes.
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Figure 6. Numerical results obtained with the box-scheme: case 1 (top), case 2 (center), and case 3
(bottom). Left panels: normalized energy and L∞(Ω)-norm of the solution; right panels: the flux at
x = 1 and the jump at x = 2.
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Results with equispaced meshes of 200 and 400 boxes are displayed on Fig 6.

In all computations, the time step is selected according to a CFL number of δ t
h

=
0.5. We consider the time evolution of the normalized energy, the L∞ norm of the
solution, the flux at x = 1, and the jump at x = 2. The accuracy of the scheme
can be observed on the low energy dissipation and on the sharp resolution for the
jump at x = 2. For instance, at time t = 5 and for case 2, the value of the energy is
underestimated by 7.6% on the coarse grid and by 1.7% on the fine grid, a significant
improvement with respect to the upwind scheme.

4.3. Local Discontinuous Galerkin (LDG)

The local discontinuous Galerkin method was developed by Cockburn and Shu [3]
for convection-diffusion equations based on earlier work devoted to hyperbolic con-
servation laws. A complete review of the LDG method and other discontinuous
Galerkin methods can be found in [4] and references therein.

Let M = ∪N
j=1[x j,x j+1] be a mesh of Ω. As for the finite volume box scheme,

we assume that the mesh is compatible with the partitioning of Ω into ΩP and ΩH ,

i.e. that a mesh node is located at point x = 1. Let k > 1 be an integer. Let V DG be
the space of piecewise discontinuous functions in Ω that are polynomials of degree
6 k in each mesh cell [x j,x j+1] for 1 6 j 6 N. Let V DG

P be the subspace of V DG

spanned by those functions that vanish identically on ΩH . For a function vh ∈V DG,
we denote its trace at a point x j in the mesh as

v±h (x j) = lim
s→0+

vh(x j ± s), 1 6 j 6 N, (4.8)

and we define its jump and average across inner element boundaries as

[vh(x j)] = v+
h (x j)− v−h (x j) and {vh(x j)} = 1

2
(v+

h
(x j)+ v−

h
(x j)), 1 6 j 6 N.

The LDG method consists of seeking uh ∈C1([0,∞[;V DG) such that ∀vh ∈V DG

and ∀t > 0,

d

dt
(uh,vh)Ω−(uh + zh,vh,x)Ω − ∑

x j∈Ω
u−h (x j) [vh(x j)]

− ∑
x j∈ΩP

{zh(x j)}[vh(x j)]− z−h (1)[vh(1)] = ( f ,vh)Ω,
(4.9)

and zh ∈C0([0,∞[;V DG
P ) such that ∀vh ∈V DG

P and ∀t > 0,

(zh,wh)Ω−α0(uh,wh,x)Ω − ∑
x j∈ΩP

α0{uh(x j)}wh[(x j)]

+α0

(

(uhwh)(1
−)− (uhwh)(0

+)
)

= 0.

(4.10)
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Figure 7. Numerical results obtained with the LDG method: case 1 (top), case 2 (center), and case
3 (bottom). Left panels: normalized energy and L∞(Ω)-norm of the solution; right panels: the flux at
x = 1 and the jump at x = 2.
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Note that (4.10) is a local reconstruction formula for the diffusive flux ζh =−α0 uh,x
in ΩP, while (4.9) is the discretization of the evolution equation using the recon-
structed flux. As for the finite volume box scheme, the continuity of the solution at
point x = 1 is not used. Furthermore, the periodicity of the flux is weakly enforced
in (4.9). Finally, Problem (4.9)–(4.10) is discretized in time via a simple explicit
Euler method (without slope limiting).

Numerical results are presented in Figure 7. Two uniform meshes of Ω are con-
sidered: a coarse mesh with 200 cells and a fine mesh with 400 cells. The time
step is obtained from the diffusive stabilty limit δ t = 1

10
h2

α0
. As before, we show the

time evolution of the normalized energy, the L∞(Ω)-norm of the solution, the flux at
x = 1, and the jump at x = 2 estimated by the difference u(t,2)−u(t,2−h); see the
two upper panels of Figures 2–4 for a comparison with the reference solution. For
case 1 where the initial data is smooth, excellent agreement is obtained. For cases 2
and 3 where the initial data is rough, the Gibbs phenomenon is triggered causing
the L∞(Ω)-norm of the solution to be larger than one until the wave has entered
completely the parabolic subdomain. It is well-known that this phenomenon can be
cured by the use of a suitable slope limiter, but this is not the scope of the present
work. We also observe that the jump at point x = 2 is captured with little accuracy.
At time t = 5 and for case 2, the value of the energy is underestimated by 2.9% on
the coarse grid and by 1.2% on the fine grid, yielding a level of accuracy comparable
to that of the box-scheme.

5. CONCLUDING REMARKS

In this paper, we have analyzed a degenerate one-dimensional advection-diffusion
equation with periodic interface conditions for the total advective-diffusive flux.
Using the evolution linear semi-groups theory, we have shown that the associated
Cauchy problem is well-posed provided an additional continuity condition is en-
forced on the solution at the parabolic to hyperbolic interface. Reference solutions
have been obtained for various sets of data (initial condition, diffusion coefficient)
and can now be used by practitioners to test the robustness of numerical schemes to
approximate flows in media with strong heterogeneities.

To conclude, we point out that various interesting theoretical points have been
postponed to future work. A classical question to which it is often difficult to an-
swer is to know in which sense the function u(t) = T (t)u0 given by the semi-group
theory solves the evolution problem when the initial condition is too rough to be
in the domain of the evolution operator. Although we have constructed a weak so-
lution to the evolution problem for a rather general class of initial conditions, it is
not yet clear that these solutions are those given by the semi-group theory. Further-
more, another viewpoint worth pursuing to analyze the evolution problem is that of
periodic distributions by seeking the Fourier series of the solution. Finally, it would
be interesting to perform a convergence analysis of the various schemes presented
above.
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