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Abstract. A pure-streamfunction formulation is introduced for the numerical simu-
lation of the two-dimensional incompressible Navier-Stokes equations. The idea is to
replace the vorticity in the vorticity- streamfunction evolution equation by the Lapla-
cian of the streamfunction. The resulting formulation includes the streamfunction only,
thus no inter-function relations need to be invoked. A compact numerical scheme, which
interpolates streamfunction values as well as its first order derivatives, is presented and
analyzed. A number of numerical experiments are presented, including driven and
double driven cavities, where the Reynolds numbers are sufficiently large, leading to
symmetry breaking of asymptotic solutions.

Keywords: Navier-Stokes equations, streamfunction formulation, vorticity, numerical
algorithm, compact schemes, driven cavity, symmetry breaking, asymptotic behavior.

1 Introduction

A new methodology for tracking vorticity dynamics was introduced in [3], [12]. More
specifically, we studied the time evolution of the planar flow subject to the Navier-
Stokes equations. It is the purpose of the present paper to upgrade this methodology
by further reducing the role of vorticity and concentrating on the streamfuction instead.

We recall the basic setup. Let Ω ⊆ R2 be a bounded, simply connected domain
with smooth boundary ∂Ω. An incompressible, viscid flow in Ω is governed by the
Navier-Stokes equations [21] (in its ”vorticity-velocity” formulation)

(1.1) ∂tξ + (u � ▽)ξ = ν∆ξ in Ω,

(1.2) ▽ � u = 0 in Ω.

The system (1.1-1.2) expresses the evolution of the vorticity ξ = ∂xv − ∂yu, where
u = (u, v) is the velocity (and (x, y) are the coordinates in Ω). The coefficient ν > 0 is
the viscosity coefficient.

The system (1.1-1.2) is supplemented by the initial data

(1.3) ξ0(x, y) = ξ(x, y, t)|t=0, (x, y) ∈ Ω,

and a boundary condition on ∂Ω. Indeed, as has been discussed in [3], this condition
is the ”source of (numerical and theoretical) trouble”, since it is normally expressed in
terms of the velocity, rather than the vorticity. In our presentation here we take the
most common condition, the so-called ”no-slip” condition,

(1.4) u(x, y, t) = 0 for (x, y) ∈ ∂Ω and all t ≥ 0.

The difficulty of ”translating” (1.4) to a boundary condition adequate for use in (1.1-
1.2) is a major topic of any numerical simulation. In this paper we overcome this
difficulty by transforming the system (1.1-1.2) to the ”pure streamfunction” version.
It will also be clear how to replace the boundary condition (1.4) by more general ones.
In fact, most of our numerical examples in this paper are studied in this more general
case.
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The vorticity formulation (1.1-1.2) has been the starting point for a wide variety of
methods designed to solve numerically the Navier-Stokes equations. Here we mention
two of them, which are of particular relevance to the present paper. In fact, each one
of them can be regarded as a ”family” of algorithms, which share some common basic
structural hypotheses, yet differ considerably in their technical details. The first is
generally labeled as the ”vortex method”. It consists of a wide array of algorithms,
all based on the approximation of the vorticity field by a collection of ”singular ob-
jects” (such as point vortices, vortex filaments etc.). These objects (which are often
mathematically ”regularized”) are advected and diffused in a way which preserves the
main physical features of the flow. Clearly, the generation of vorticity on the bound-
ary is of crucial significance in this approach. We refer the reader to the recent book
[6] for a comprehensive treatment. The second method is usually referred to as the
”vorticity-streamfunction” method, and has gained increasing attention in recent years
(see e.g. [8], [7], [18], [22], [4], [15], [14]). In some sense the streamfunction-vorticity
formulation is an evolution of vortex methods. However, while the latter is a ”particle
method”, which does not require a grid, the former assumes a smooth distribution of
vorticity laid out on a regular grid. The vorticity equation (1.1) is then treated by
temporal discretization. Once again, there are numerous ways of handling the spa-
tial discretization, such as spectral techniques, finite differences, finite volume or finite
element algorithms. The velocity field is typically updated, subject to the incompress-
ibility constraint (1.2), by means of the evolution of the streamfunction (see Section 2
below for some mathematical background). Consider for example, the recent paper [4],
where the evolution of the vorticity is accomplished by a ”fractional step scheme”. The
first step (”hyperbolic”) takes care of the advection. The second step, which is labeled
there as a ”Stokes flow step”, is a ”parabolic-elliptic” system, where the vorticity is
diffused by a heat-type equation, coupled to a Poisson equation which ties the vortic-
ity to the streamfunction. Since the Poisson equation allows for only one boundary
condition on the streamfunction (say, of Dirichlet type), the second one (see Section
2 below for details) must be accommodated by accounting appropriately for the vor-
ticity boundary values. Thus, boundary conditions for the vorticity must be brought
into play. This approach should be compared with Gresho’s observation ([11, pp 428,
429]), that ”there are no boundary conditions for the vorticity, and none is needed”
hence ”the elliptic equation for the streamfunction cannot be viewed in isolation be-
cause the inevitable conclusion is that it carries too many boundary conditions”. This
”overdeterminacy” problem was addressed in the previous paper [3]. The key idea of
”vorticity projection” was introduced; instead of solving the Poisson equation ξ = ∆ψ
(which, as already observed, cannot take care of the two conditions on ψ ) one solves
∆ξ = ∆2ψ. The two boundary conditions are applied directly to ψ, and there is no need
for boundary values of the vorticity. This idea is carried one step further in this paper
(compare [12]). The vorticity ”disappears” altogether and only the streamfunction and
its gradient (i.e., velocity) are discretized in a ”box-scheme” style. This means that
all discretized values are attached to the grid nodes. The gradient values (which are
regarded independently) are related to the function values via suitable compatibility
conditions, preserving the overall accuracy of the scheme. We are therefore justified in
labeling the scheme presented here as a ”pure streamfunction” scheme, which follows
closely the theoretical treatment of Eq. (1.1-1.2).
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The plan of the paper is as follows. In section 2 we recall the classical construction of
the streamfunction and present the mathematical background needed for our treatment.
A basic element in this study consists of using the bilaplacian ∆2 as the ”driving
generator” of the evolution. In section 3 we describe our numerical scheme, where the
spatial discretization of ∆2 plays a significant role. Briefly, we assign, at each node,
values for the streamfunction and its gradient, and use a compact (second-order) scheme
for ∆2. It allows a ”clean” representation of the boundary condition, restricted fully to
the boundary points. Section 4 is devoted to a detailed study of questions of stability
and convergence in a suitable linearized model. In section 5 we present detailed results
of numerical experiments, including a driven and a doubly-driven cavity. Here we go
beyond the mere inspection of the time evolution and study also aspects of asymptotic
behavior and ”breakdown of symmetry” [3], [17].

The present scheme, as well as some numerical results, have been presented by three
of the authors at a conference (see [9]).

2 Pure-Streamfunction Formulation.

The streamfunction ψ(x, y, t) was already introduced by Lagrange (see [13]) as a prime
object in the investigation of the two-dimensional incompressible flow. The incompress-
ibility condition (1.2) entails the existence of a function ψ(x, y, t) such that, for any
fixed t ≥ 0,

(2.1) u(x, t) = ▽
⊥ψ = (−∂ψ

∂y
,
∂ψ

∂x
).

It follows that ξ = ∆ψ and equation (1.1) takes the form

(2.2) ∂t(∆ψ) + (▽⊥ψ) · ▽(∆ψ) = ν∆2ψ, in Ω.

Observe that the velocity field u is divergence-free due to (2.1). Furthermore, the
boundary condition (1.4) now reads

(2.3) ▽ψ(x, y, t) = 0 for (x, y) ∈ ∂Ω, t ≥ 0.

Since ψ is clearly only determined up to an additive constant, we can rewrite (2.3) as

(2.4) ψ(x, y, t) =
∂ψ

∂n
(x, y, t) = 0, (x, y) ∈ ∂Ω, t ≥ 0,

where ∂
∂n is the outward normal derivative. Finally, the initial data (1.3) is now written

in terms of ψ,

(2.5) ψ0(x, y) = ψ(x, y, t)|t=0, (x, y) ∈ Ω.

For functions ψ which are sufficiently regular the boundary condition (2.4) is equivalent
to

(2.6) ψ(x, y, t) ∈ H2
0 (Ω) for any fixed t ≥ 0,
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where H2 is the Sobolev space of order 2, equipped with the norm

(2.7) ‖ψ(·, ·, t)‖2
H2 =

∫

Ω
ψ2dxdy +

∫

Ω
(∆ψ)2dxdy

(see [16]). The closed subspaceH2
0 (Ω) ⊆ H2(Ω) is defined as the closure of the subspace

C∞
0 of smooth compactly-supported functions, with respect to the H2-norm.

The Sobolev space H4 is defined in exactly the same fashion, adding the integral of
(∆2ψ)2 to the right-hand-side of (2.7). As is well-known, the operator ∆2 is a positive
(self-adjoint) operator in H4 [16], whose domain is H4 ∩H2

0 . It therefore gives rise to
a contraction (analytic) semigroup which solves (uniquely) the linear equation

(2.8) ∂t(∆Θ) = ν∆2Θ, Θ(·, ·, t) ∈ H2
0 (Ω).

Observe the presence of ∆Θ in the left-hand-side of (2.8). It makes the equation
more subtle than a simple generalization of the heat equation. For example, a ”formal
division” by ∆ might lead one to conclude that the ”spatial order” of the equation is
two, hence (in analogy with the heat equation) only one boundary condition is needed
(i.e., Θ ∈ H1

0 ). This is in fact not the case, and a double condition (i.e., H2
0 , as in (2.4)

is needed. Even the definition of ”eigenfunctions” for (2.8) (and their completeness)
is not quite clear. We refer to [12] for the one dimensional case (where Ω ⊆ R is an
interval).

Comparing Eqs. (2.2) and (2.8) we see that the convective nonlinear term in (2.2)
adds yet another difficulty to the mathematical study of the equation. Furthermore, an
important objective of this study is the extension of the theory to ”rough” initial data,
namely, letting ξ0 = ∆ψ0 be a singular function. This is not only a ”pure mathematical
interest” but, on the contrary, represents the common physical (and numerical) models
of point vortices or vortex filaments. We refer the reader to [2] for a full treatment of the
mathematical aspects. We emphasize that our ”pure streamfunction” approach in this
paper is very closely linked to the theoretical treatment. In what follows we indicate
how the questions of uniqueness and asymptotic decay are handled in this framework.
The results of the two theorems are certainly not new, but their proofs in terms of the
streamfunction shed light on the usefulness of this formulation. Furthermore, they are
very close to the proofs in the discrete case. In particular, the estimates used in the
proof of Theorem 2.1 are analogous to the stability proof for the convergence of the
discrete scheme in Theorem 4.1.

Theorem 2.1 (Uniqueness) Let ψ, ψ̃ ∈ H2
0 (Ω) be solutions of (2.2- 2.4) having the

same initial data. Let u = ▽
⊥ψ, v = ▽

⊥ψ̃ be the corresponding velocity fields, and
ξ = ∆ψ, η = ∆ψ̃ the corresponding vorticities. Then ψ ≡ ψ̃.

Proof. We consider equation (1.1) and the corresponding one for η,v. Taking their
difference and multiplying by ψ − ψ̃ we get,

(2.9)

∫
Ω(ψ − ψ̃)∂t(ξ − η)dx −

∫
Ω ξ((u − v) · ▽)(ψ − ψ̃)dx

−
∫
Ω(ξ − η)(v · ▽)(ψ − ψ̃)dx = ν

∫
Ω(ξ − η)2dx.

But clearly (u−v) ·▽(ψ− ψ̃) ≡ 0. The first term in the LHS of (2.9) can be rewritten
as

(2.10)

∫

Ω
(ψ − ψ̃)∂t(ξ − η)dx = −1

2

d

dt

∫

Ω
|▽(ψ − ψ̃)|2dx.
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As for the third integral in the LHS of (2.9), we use Hölder’s inequality, an interpolation
inequality for the L4 norm (see [21], Sec. 3.3.3) and standard elliptic estimates to obtain

(2.11)
|
∫
Ω(ξ − η)(v · ▽)(ψ − ψ̃)dx| ≤ ‖ξ − η‖L2(Ω) ‖v‖L4(Ω) ‖▽(ψ − ψ̃)‖L4(Ω)

≤ C‖ξ − η‖L2(Ω) ‖v‖1/2
L2(Ω)

‖▽v‖1/2
L2(Ω)

‖▽(ψ − ψ̃)‖1/2
L2(Ω)

‖∆(ψ − ψ̃)‖1/2
L2(Ω)

(where C is a ”generic” constant depending only on Ω). We now note that, by definition,

‖v‖L2(Ω) ≤ C‖ψ̃‖H1

0
(Ω) ≤ C[‖ψ̃‖L2(Ω) + ‖∆ψ̃‖L2(Ω)],

‖▽v‖L2(Ω) ≤ C[‖ψ̃‖L2(Ω) + ‖∆ψ̃‖L2(Ω)],

hence (2.11) can be rewritten as,

(2.12)
|
∫
Ω(ξ − η)(v · ▽)(ψ − ψ̃)dx| ≤

C{‖ξ − η‖3/2
L2(Ω)

‖▽(ψ − ψ̃)‖1/2
L2(Ω)

[‖ψ̃‖L2(Ω) + ‖∆ψ̃‖L2(Ω)]}.

The RHS in (2.12) can be further estimated by

(2.13)
‖ξ − η‖3/2

L2(Ω)
‖▽(ψ − ψ̃)‖1/2

L2(Ω)
[‖ψ̃‖L2(Ω) + ‖∆ψ̃‖L2(Ω)]

≤ ǫ‖ξ − η‖2
L2(Ω) + 64

81ǫ3 [‖ψ̃‖L2(Ω) + ‖∆ψ̃‖L2(Ω)]
4 ‖▽(ψ − ψ̃)‖2

L2(Ω).

We take ǫ = ν
2C in this estimate and insert it in (2.9). In conjunction with (2.10),

(2.12) we get,

(2.14)
d

dt
‖▽(ψ − ψ̃)‖2

L2(Ω) ≤ C‖▽(ψ − ψ̃)‖2
L2(Ω),

where C > 0 depends on ψ̃ (in addition to ν, Ω) but not on ψ. Since ψ(x, 0) = ψ̃(x, 0),
the Gronwall inequality yields ψ ≡ ψ̃. �

Turning to the asymptotic behavior of the solution to (2.2), we have the following.

Theorem 2.2 (Decay of solutions) Let ψ(x, t) be a solution to (2.2). Then there
exists a positive constant λ, depending only on Ω, such that

(2.15) ‖|▽ψ(x, t)|‖L2(Ω) ≤ e−νλt‖|▽ψ(x, 0)|‖L2(Ω).

Proof. Let us first note that

(2.16)

∫

Ω

∂∆ψ

∂t
ψdx =

1

2

d

dt

∫

Ω
ψ∆ψdx.

We may rewrite the integral in RHS of (2.16) as follows.

(2.17)

∫

Ω
ψ∆ψdx =

∫

Ω
ψ▽ · (▽ψ) = −

∫

Ω
|▽ψ|2dx.

Combining equations (2.16-2.17) and (2.2), we find that

(2.18) −1

2

∂

∂t

∫

Ω
|▽ψ|2dx = −

∫

Ω
ψ(▽⊥ψ · ▽)∆ψdx + ν

∫

Ω
ψ∆2ψdx.
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Using (2.1), the first term in the RHS of (2.18) may be rewritten as follows.

(2.19)

∫

Ω
ψ(u · ▽)∆ψdx = −

∫

Ω
(▽ψ · u)∆ψdx = 0,

since ▽ψ · u ≡ 0.
Now, we treat the second term in the RHS of (2.18). Since ∆ is a self-adjoint

operator on H2
0 (Ω),

(2.20)

∫

Ω
ψ∆2ψ =

∫

Ω
(∆ψ)2dx.

Applying (2.19-2.20) to (2.18), we find that

1

2

∂

∂t

∫

Ω
|▽ψ|2dx = −ν

∫

Ω
(∆ψ)2dx.

Using the Poincaré inequality

∫

Ω
(∆ψ)2dx ≥ λ

∫

Ω
|▽ψ|2dx,

where λ is a positive constant depending on Ω, we conclude that

‖|▽ψ(x, t)|‖L2(Ω) ≤ e−νλt‖|▽ψ(x, 0)|‖L2(Ω).

�

3 The Numerical Scheme.

To simplify the exposition, assume that Ω is a rectangle [a, b] × [c, d]. We lay out a
uniform grid a ≤ x0 < x1 < ... < xN = b, c ≤ y0 < y1 < ... < yM = d. Assume that
∆x = ∆y = h. At each grid point (xi, yj) we have three unknowns ψij , pij, qij , where
p = ψx and q = ψy.

The time discretization is obtained by a Crank-Nicolson scheme, which approxi-
mates (2.2). The latter is applied at interior points 1 ≤ i ≤ N − 1, 1 ≤ j ≤M − 1. On
the boundary i = 0, N or j = 0,M ψ, p = ψx, q = ψy are determined by the boundary
conditions (2.4). In order to do that we have to give discrete expressions for the spatial
operators which appear in (2.2).

3.1 Spatial Discretization.

3.1.1 The Viscous Term.

Our scheme is based on Stephenson’s [20] scheme for the biharmonic equation

∆2ψ = f.
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Figure 1: Stephenson’s scheme for ∆2ψ = f : The finite difference operator (∆2
h)
cψ at

point (i, j) is ∆2P (xi, yj) where ψ = P (x, y) is a polynomial in P 3 + Span(x4, x2y2, y4)
defined by the 13 collocated values for ψ, ψx, ψy displayed.

Later on, Altas et al. [1] and Kupferman [12] applied Stephenson’s scheme, using a
multigrid solver. Stephenson’s compact approximation for the biharmonic operator is
the following.

(3.1)






(∆2
h)
cψi,j =

1

h4

{
56ψi,j − 16(ψi+1,j + ψi,j+1 + ψi−1,j + ψi,j−1)

+2(ψi+1,j+1 + ψi−1,j+1 + ψi−1,j−1 + ψi+1,j−1)

+6h[(ψx)i+1,j − (ψx)i−1,j + (ψy)i,j+1 − (ψy)i,j−1]

}

= fi,j

Here, (∆2
h)
cψi,j is the compact second-order approximation for ∆2ψ specified in caption

of Fig. 1. We have also to relate ψx and ψy to ψ. This is done via the following fourth-
order compact schemes.

(3.2) h(ψx)i,j =
3

4
(ψi+1,j − ψi−1,j) −

h

4

[
(ψx)i+1,j + (ψx)i−1,j

]

(3.3) h(ψy)i,j =
3

4
(ψi,j+1 − ψi,j−1) −

h

4

[
(ψy)i,j+1 + (ψy)i,j−1

]

Equations (3.1-3.3) form a second order compact scheme for ∆2ψ, involving values
of ψ,ψx and ψy at (i, j) and at its eight nearest neighbors (see Figure 1). Thus,
the scheme is compact. The approximation above is applied at any interior point
1 ≤ i ≤ N − 1, 1 ≤ j ≤ M − 1. On the boundary i = 0, N or j = 0,M ψ,ψx, ψy are
determined from the boundary conditions (2.4).

8



3.1.2 The Laplacian of a Discrete Function.

For any function g we define the discrete approximation to ∆g by ∆hg, where ∆hg is

(3.4) ∆hg = δ2xg + δ2yg,

and

δ2xgi,j =
gi+1,j − 2gi,j + gi−1,j

h2
, δ2ygi,j =

gi,j+1 − 2gi,j + gi,j−1

h2
.

3.1.3 The Convective Term.

The convective term (▽⊥ψ) · ▽(∆ψ) is approximated as follows.

(3.5) (▽⊥ψ)i,j =
[
− (ψy)i,j , (ψx)i,j

]
.

No further approximation is needed, since ψx and ψy are part of the unknowns in our
discretization. Now,

(3.6) ▽(∆ψ)i,j = ((∆ψx)i,j , (∆ψy)i,j) = = ((∆hψx)i,j , (∆hψy)i,j) +O(h2, h2).

Note that the above discretization is well defined for any interior point 1 ≤ i ≤ N −
1, 1 ≤ j ≤M − 1. The resulting scheme has the following form.

3.2 The Scheme

Combining (3.1-3.6) and the time discretization, we obtain the following scheme.

(3.7)






(∆hψi,j)
n+1/2 − (∆hψi, j)

n

∆t/2
=

−[−(ψny )i,j, (ψ
n
x )i,j] · [(∆hψ

n
x )i,j, (∆hψ

n
y )i,j]

+
ν

2

[
(∆2

h)
cψ

n+1/2
i,j + (∆2

h)
cψni,j

]

(3.8)






(∆hψi,j)
n+1 − (∆hψi, j)

n

∆t
=

−[−(ψ
n+1/2
y ]i,j , [ψ

n+1/2
x )i,j] · [(∆hψ

n+1/2
x )i,j , (∆hψ

n+1/2
y )i,j ]

+
ν

2
[(∆2

h)
cψn+1

i,j + (∆2
h)
cψni,j ]

where (∆2
h)
c is defined in (3.1).

Remark that we apply the scheme above to all interior point, and on boundary
points we impose the boundary conditions by determining ψ,ψx and ψy from (2.4).

4 Stability and Convergence in Two Dimensions

4.1 Stability of the Predictor-Corrector scheme in Two Dimensions

We consider the predictor-corrector scheme (3.7)-(3.8) applied to the linear model equa-
tion

(4.1) ∆ψt = a∆ψx + b∆ψy + ν∆2ψ.
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This scheme reads

(4.2)






∆hψ
n+1/2 − ∆hψ

n

∆t/2
= a∆hψ

n
x + b∆hψ

n
y +

ν

2
(∆2

hψ
n + ∆2

hψ
n+1/2) (a)

∆hψ
n+1 − ∆hψ

n

∆t
= a∆hψ

n+1/2
x + b∆hψ

n+1/2
y +

ν

2
(∆2

hψ
n+1 + ∆2

hψ
n) (b)

where ∆hψ
n, ∆2

hψ
n, ψnx and ψny are defined in (3.4) and (3.1-3.3) respectively.

Denote

(4.3) η =
∆t

h
; µ =

ν∆t

h2

We have

Proposition 4.1 The difference scheme (4.2) is stable in the Von Neumann sense
under the sufficient condition

(4.4) max(|a|, |b|) η ≤ min(

√
8

3

√
µ,

√
2

3
)

Proof:
Let θ = αh ∈ [0, 2π[ , φ = βh ∈ [0, 2π[ and ψnjk = ψ̂n(α, β)eijθeikφ. We denote by
g1(θ, φ) the amplification factor of the predictor step (4.2a), g2(θ, φ) the amplification
factor after the two steps (4.2). The factor g1(θ, φ) is

(4.5) g1(θ, φ) =
A1(θ, φ) −B1(θ, φ) + iC1(θ, φ)

A1(θ, φ) +B1(θ, φ)

with

A1(θ, φ) =
2 − 2 cos θ

h2
+

2 − 2 cos φ

h2
,

B1(θ, φ) =
µ

4

[
6
2 − 2 cos θ

h2

1 − cos θ

2 + cos θ
+ 6

2 − 2 cos φ

h2

1 − cosφ

2 + cosφ
+ 2

2 − 2 cos θ

h

2 − 2 cos φ

h

]
,

C1(θ, φ) =
η

2

[2 − 2 cos θ

h2
+

2 − 2 cos φ

h2

][3a sin(θ)

2 + cos θ
+

3b sin(φ)

2 + cosφ

]
.

The factor g2(θ, φ) is

(4.6) g2(θ, φ) =
A1(θ, φ) − 2B1(θ, φ) + 2iC1(θ, φ)g1(θ, φ)

A1(θ, φ) + 2B1(θ, φ)

The stability condition supθ,φ |g2(θ, φ)| ≤ 1 is equivalent for each θ, φ ∈ [0, 2π[ to

(4.7)
−4C1(θ, φ) Im(g1(θ, φ))[A1(θ, φ) − 2B1(θ, φ)] + 4C2

1 (θ, φ)|g1(θ, φ)|2
≤ 8A1(θ, φ)B1(θ, φ).
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We restrict ourselves to the case where

(4.8) sup
θ,φ∈[0,2π[

|g1(θ, φ)| ≤ 1

A sufficient condition for (4.8) to be satisfied is

max(|a|, |b|)η ≤
√

8

3

√
µ.

Then (4.7) is satisfied under the sufficient condition

C2
1

[
1 − A1 − 2B1

A1 +B1

]
≤ 2A1B1.

The latter is equivalent to

(4.9)
1

4
η2

[3a sin(θ)

2 + cos θ
+

3b sin(φ)

2 + cosφ

]2 · 3 A1

A1 +B1
≤ 2.

A sufficient condition for (4.9) is

max(a2, b2) η2 ≤ 2

9
,

which completes the proof. �

Observe that in the nonconvective case, a = b = 0, the scheme is unconditionally
stable, as could be expected. Thus, the presence of lower-order convective terms makes
it necessary to limit the timestep.

Remark: Note that the restriction of the CFL number (4.4) by a formula of the
type

(4.10) max(|a|, |b|) η ≤ C
√
µ

pertains to a centered scheme for the convection-diffusion equation, with an implicit
discretization of the diffusive term and an explicit discretization of the convective term,
even in the one-dimensional situation.

4.2 Convergence of the spatially semi-discrete two-dimensional scheme

In the next theorem, we prove a rate of convergence of h2 for the time continuous
version of scheme (3.7-3.8), when applied to the linear equation (4.1) on [0, 1] × [0, 1]
in the H2

0 setting.
Define h = 1/N, xi = yi = ih, 0 ≤ i ≤ N . We call L2

h,0 the space of N × N arrays in

x and y directions, for which u0,j = uN,j = ui,0 = ui,N = 0. For u, v ∈ L2
0,h, the scalar

product is

(u, v)h =

N−1∑

i=1

N−1∑

j=1

uijvijh
2

11



and the norm

|u|h = (

N−1∑

i=1

N−1∑

j=1

|uij |2h2)1/2

For ψ̃ ∈ L2
h,0, the spatial discrete operators ∆hψ̃, ∆2

hψ̃, ψ̃x and ψ̃y are defined in (3.4)
and (3.1-3.3) respectively.
In the investigation of the convergence properties of our scheme we use the exact
equation (2.2) and a semi-discrete analog of (3.7, 3.8). Thus the discrete solution is
represented by the grid functions ψ̃i,j(t), ψ̃x,i,j(t), ψ̃y,i,j(t) which approximate the exact
solution ψ(x, y, t), ψx(x, y, t), ψy(x, y, t) at (x, y) = (ih, jh). We have ψ̃, ψ̃x, ψ̃y ∈ L2

h,0,

so that the boundary values of ψ̃, ψ̃x, ψ̃y vanish. Thus, the equation satisfied by the
discrete functions is

(4.11)
∂

∂t
∆hψ̃ = a∆h(ψ̃x) + b∆h(ψ̃y) + ν∆2

h(ψ̃)

subject to initial conditions

(4.12) ψ̃i,j = ψ0(ih, jh), (ψ̃x, ψ̃y)i,j =
[
ψ0,x(ih, jh), ψ0,y(ih, jh)

]
.

For every discrete u ∈ L2
h,0 we set as usual

(4.13) (δ+x u)i,j =
ui+1,j − ui,j

h
, (δ+y u)i,j =

ui,j+1 − ui,j
h

.

and

(4.14) (δxu)i,j =
ui+1,j − ui−1,j

2h
, (δyu)i,j =

ui,j+1 − ui,j−1

2h
.

Our convergence result is the following.

Theorem 4.1 Let the discrete solution ψ̃, ψ̃x, ψ̃y satisfy (4.11), and the boundary con-
ditions

ψ̃i,j = ψ̃x,i,j = ψ̃y,i,j = 0 for i ∈ {0, N} or j ∈ {0, N}.
Let ψ be the exact solution of (2.2) subject to the boundary conditions (2.4). Fix τ > 0.
Then, for 0 ≤ t ≤ τ , there exists a constant C > 0, depending only on τ and the initial
data, such that

(4.15) |e|h + |δ+x e|h + |δ+y e|h ≤ Ch2

where e = ψ̃ − ψ is the difference between the approximate and the exact solutions on
the grid, the latter being supposed sufficiently regular.

Proof. The exact solution ψ satisfies

(4.16)
∂

∂t
∆hψ = a∆h(ψx) + b∆h(ψy) + ν∆2

h(ψ) − T,

where T = O(h2) is the truncation error. Observe that in (4.16), the values (ψx)ij , (ψy)ij
are not the components of the gradient of the given smooth solution ψ (at (i, j)) but

12



are the values obtained from the discrete values ψij by use of (3.2-3.3). Subtracting
(4.16) from (4.11) and denoting the error e = ψ̃ − ψ, we have

(4.17)
∂

∂t
∆he = a∆h(ex) + b∆h(ey) + ν∆2

he+ T.

The viscous term given in (3.1) is

ν∆2
heij =

ν

h4

{
56eij − 16(ei+1,j + ei−1,j) − 16(ei,j+1 + ei,j−1)

+ 2(ei+1,j+1 + ei−1,j+1) + 2(ei+1,j−1 + ei−1,j−1)

+ 6h[(ex)i+1,j − (ex)i−1,j + (ey)i,j+1 − (ey)i,j−1]

}
,

which may be rewritten as

ν∆2
heij =

ν

h4

{
− 8eij − 16(ei+1,j − 2eij + ei−1,j) − 16(ei,j+1 − 2eij + ei,j−1)

+ 2(ei+1,j+1 − 2ei,j+1 + ei−1,j+1) + 2(ei+1,j−1 − 2ei,j−1 + ei−1,j−1)

+ 4(ei,j+1 + ei,j−1) + 6h[(ex)i+1,j − (ex)i−1,j + (ey)i,j+1 − (ey)i,j−1]

}
.

The latter may be simplified to

(4.18)
ν∆2

heij = ν
h4

{
− 12h2δ2xeij − 12h2δ2yeij + 2h4δ2xδ

2
yeij+

+6h[(ex)i+1,j − (ex)i−1,j + (ey)i,j+1 − (ey)i,j−1]

}
.

or

(4.19) ν∆2
hei,j = ν

[
δ4xei,j + δ4yei,j + 2δ2xδ

2
yei,j

]

where
(4.20)

δ4xui,j =
12

h2

[
δx(ux)i,j − δ2xui,j

]
; δ4yui,j =

12

h2

[
δy(uy)i,j − δ2yui,j

]
; δ2xδ

2
yui,j = (δxy)

2ui,j.

The rows (and the columns) of elements in L2
h,0 are (N+1)−vectors θ = (θ0, θ1, ..., θN )

such that θ0 = θN = 0. We denote by l2h,0 the ((N − 1)−dimensional) space of such
vectors. It will be convenient to refer to the (N − 1)−dimensional part (θ1, ..., θN−1) of
vectors in l2h,0 and the operators acting on it (with the understanding that θ0 = θN = 0).

The scalar product and the norm in l2h,0 are

(4.21) (θ, θ̃)h = h

N−1∑

i=1

θiθ̃i, |θ|2h = h

N−1∑

i=1

θ2
i ,

which is in agreement with the notation for L2
h,0 (in the case of arrays).
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The proof consists now of applying the energy method to (4.17). In order to do
that, we need the discrete analog of the following L2(Ω) scalar products denoted by
( . , . ), where it is assumed that ψ ∈ H2

0 (Ω).

(4.22)

(i) (∆ψ,ψ) = −|∇ψ|2
(ii) (a∆∂ψ

∂x + b∆∂ψ
∂y , ψ) = 0

(iii) (∆2ψ,ψ) = |∆ψ|2.

The main difficulty is that the discrete gradient (ex, ey) in (4.17) is defined implicitly by
(3.2)-(3.3), so that a classical discrete integration by parts like (δxe, e)h = 0 for e ∈ l2h,0
no longer holds. Also the biharmonic operator applied to e as defined by (3.1) involves
the values of ex. These values have to be related to the standard difference operators
like δ±x e in order to get an equivalent form to (4.22(iii)).

Let us introduce P be as the finite difference operator acting in l2h,0 by

(4.23) (Pθ)i = θi−1 + 4θi + θi+1, 1 ≤ i ≤ N − 1, θ ∈ l2h,0.

The operator P is positive symmetric (diagonally dominated), so that by the Cauchy-
Schwartz inequality,

(4.24) 2|θ|2h ≤ (Pθ, θ)h ≤ 6|θ|2h, θ ∈ l2h,0.

Note that by (3.2), (ex)i,j is defined by

(4.25) (Pex)i,j =
3

h
(ei+1,j − ei−1,j), 1 ≤ i, j ≤ N − 1.

In the sequel, we handle any grid function ui,j ∈ L2
h,0 as well as finite difference operators

acting on them, as (N − 1)× (N − 1) matrices. Denoting ejx = ((ex)1,j , ..., (ex)N−1,j)
T ,

ej = (e1,j , ..., eN−1,j)
T , , 1 ≤ j ≤ N − 1 the j − th columns of the matrices ex, e, we

can rewrite (4.25) as

(4.26) Pejx = 6δxe
j , 1 ≤ j ≤ N − 1,

or simply in matrix form

(4.27) Pex = 6δxe,

and similarly

(4.28) eyP = 6δye.

Note that in (4.27-4.28), we refer to P as the symmetric positive definite matrix

(4.29) Pi,m =






4, m = i
1, |m− i| = 1
0, |m− i| ≥ 2

In addition, due to (δxu, u)h = 0 for u ∈ l2h,0, we have

(4.30) (Pejx, e
j)h = 0 , j = 1, ..., N − 1.

14



Note also that multiplication on the left of a matrix A by P results in replacing its
i−th row Ai by 4Ai +Ai+1 +Ai−1. Multiplication on the right has the same effect on
the columns.
The matrix representing δ2x is (see (3.4)) h−2(P − 6I), as multiplication on the left (of
the matrix g), while δ2y is expressed by the same multiplication on the right. Taking
the scalar product of (4.17) with e yields

(4.31)






( ddt∆he, e)h = ν(∆2
he, e)h (I)

+ a(∆hex, e)h + b(∆hey, e)h (II)
+ (T, e)h (III)

(I), (II), (III) are respectively the diffusive, convective, and truncation terms.

We first consider the diffusive term (I). The crucial step in the proof of the theorem
is the derivation of a suitable lower bound for (∆2

he, e)h, for e, ex, ey ∈ L2
h,0(Ω). In the

continuous case, if φ ∈ H2
0 (Ω), an integration by parts yields

(4.32) (∆2φ, φ)L2(Ω) = ‖∆φ‖2
L2(Ω).

Our discrete analog is given by the following claim.
Claim: There exists a constant C ≥ 0 independent of h, such that, for all grid functions
u ∈ L2

h,0

(4.33) (∆2
hu, u)h ≥ C

[
|δ+x ux|2h + |δ+y uy|2h + |δ+y ux|2h + |δ+x uy|2h

]
,

where ux, uy are related to u as in (4.27), (4.28).
Proof of the claim: Let us first observe that for all u, v ∈ l2h,0

(4.34) (δxu, v)h = (δ+x u,Πv)h,

where Π : l2h,0 → l2h,0 is the averaging operator defined by

(4.35) (Πv)i =
1

2
(vi + vi+1), 1 ≤ i ≤ N − 1.

Indeed, to prove (4.34), we note that

(4.36) (δxu, v)h =
1

2

(
(δ+x + δ−x )u, v

)
h
.

But since δ+x = δ−x S, where (Sv)k = vk+1, 1 ≤ k ≤ N − 1 is the forward shift in the x
direction, we have
(4.37)

(δxu, v)h = −(u, δxv)h = −
(

1

2
δ−x (I + S)v, u

)

h

=

(
1

2
(I + S)v, δ+x u

)

h

= (Πv, δ+x u)h.

For any u ∈ L2
h,0, we have now

(∆2
hu, u)h = (δ4xu, u)h + (δ4yu, u)h + 2(δ2xδ

2
yu, u)h

=
12

h2

(
δxux − δ2xu, u

)

h

+
12

h2

(
δyuy − δ2yu, u

)

h

+ 2
(
δ2xδ

2
yu, u

)
h
.
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Next we check that for any v ∈ l2h,0

(4.38)
12

h2

(
δxvx − δ2xv, v

)

h

≥ C|δ+x vx|2h.

Noting (4.34) and −(δ2xv,w)h = (δ+x v, δ
+
x w)h for all v,w ∈ l2h,0, we get

(δxvx − δ2xv, v)h = −(δ+x v,Πvx)h + (δ+x v, δ
+
x v)h

= (δ+x v, δ
+
x v − Πvx)h

= (δ+x v − Πvx, δ
+
x v − Πvx)h + (Πvx, δ

+
x v − Πvx)h

≥ (Πvx, δ
+
x v − Πvx)h.

Recall that P = 6I + h2δ2x. Then, by (4.27)

(4.39) (vx, z+
h2

6
δ2xz)h =

1

6
(vx, P z)h =

1

6
(Pvx, z)h = (δxv, z)h = (δ+x v,Πz)h, z ∈ l2h,0.

Setting z = vx in (4.39), we have

(4.40) (Πvx, δ
+
x v−Πvx)h = (vx, vx +

h2

6
δ2xvx)h− |Πvx|2h = |vx|2h−

h2

6
|δ+x vx|2h− |Πvx|2h.

Using finally that for all w ∈ l2h,0

(4.41) |w|2h − |Πw|2h =
h2

4
|δ+x w|2h,

we deduce from (4.40) that

(4.42) (δxvx − δ2xv, v)h ≥ (Πvx, δ
+
x v − Πvx)h = (

h2

4
− h2

6
)|δ+x vx|2h =

h2

12
|δ+x vx|2h,

which is the desired result (4.38). Clearly, the same result holds for a bidimensional
grid function v ∈ L2

h,0 (summation over all columns of the matrix v).

Consider now the mixed term (δ2xδ
2
yu, u)h = |δ+x δ+y u|2h. We assert that

(4.43) |δ+x δ+y u|h ≥ 1

6
|δ+x uy|h.

To prove (4.43), we write first

(4.44) δ+x δ
+
y ui,j =

δ+y ui+1,j − δ+y ui,j

h
.

Using δ+y ui,j = δyui,j + h
2 δ

2
yui,j and (4.28), we deduce

(4.45)




δ+x δ
+
y ui,j =

δyui+1,j − δyui,j
h

+
1

2

[
δ2yui+1,j − δ2yui,j

]

=
1

h

[
(uy)i+1,j − (uy)i,j

]
+
h

6

[
δ2y(uy)i+1,j − δ2y(uy)i,j

]
+

1

2

[
δ2yui+1,j − δ2yui,j

]

= δ+x (uy)i,j +
h2

6
δ2yδ

+
x (uy)i,j +

h

2
δ2yδ

+
x ui,j.
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In addition, using the definition of δ2y we have

(4.46) |δ2yδ+x uy|h ≤ 4

h2
|δ+x uy|h,

and using δ2y = δ−y δ
+
y , we have again by definition

(4.47) |δ2yδ+x u|h ≤ 2

h
|δ+y δ+x u|h.

Therefore, we deduce from (4.45)

|δ+x δ+y u|h ≥ |δ+x uy|h −
h2

6
|δ2yδ+x uy|h −

h

2
|δ2yδ+x u|h

≥ |δ+x uy|h −
2

3
|δ+x uy|h − |δ+x δ+y u|h.

This gives finally 2|δ+x δ+y u|h ≥ 1
3 |δ+x uy|h which is (4.43). We proceed in the same way

in proving the symmetric estimate

(4.48) |δ+x δ+y u|h ≥ 1

6
|δ+y ux|h.

This concludes the proof of the claim (4.33).

The convective term (II) = a(∆hex, e)h + b(∆hey, e)h in (4.31) is

(4.49) (II) = a(δ2x(ex), e)h + a(δ2y(ex), e)h + b(δ2x(ey), e)h + b(δ2y(ey), e)h.

Since we do not have a strict discrete equivalent of (4.22(ii)) we proceed as follows.
The first term in the right-hand-side of (4.49) is

(4.50) a(δ2xex, e)h = −a(δ+x ex, δ+x e)h.

so that

(4.51) |a(δ2xex, e)h| ≤ |a|
[
ε|δ+x ex|2h +

1

4ε
|δ+x e|2h

]
.

where ε > 0 will be selected latter. Proceeding in the same way for the three other
terms in (4.49), we find the estimate of the convective term

|a(∆hex, e)h + b(∆hey, e)h| ≤ max(|a|; |b|)
[
ε{|δ+x ex|2h + |δ+y ey|2h + |δ+x ey|2h + |δ+y ex|2h}

+
1

2ε
{|δ+x e|2h + |δ+y e|2h}

]
.

Finally the truncation term (III) in (4.31) is estimated by

(4.52) |(III)| = |(T, e)h| ≤
1

2
|T |2h +

1

2
|e|2h ≤ C ′

[
h4 + |δ+x e|2h + |δ+y e|2h

]
.
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Collecting now the terms (I),(II),(III) in (4.31), we find

1

2

d

dt

[
|δ+x e|2h + |δ+y e|2h

]
= −(

d

dt
∆he, e)h

≤
[
εmax(|a|, |b|) − Cν

][
|δ+x ex|2h + |δ+y ey|2h + |δ+x ey|2h + |δ+y ex|2h

]

+

[
1

2ε
max(|a|, |b|) + C ′

][
|δ+x e|2h + |δ+y e|2h

]
+ C ′h4.

Selecting now ε sufficiently small in order that
[
εmax(|a|; |b|) − Cν

]
≤ 0, we obtain

(4.53)
d

dt

[
|δ+x e|2h + |δ+y e|2h

]
≤ C ′′(ν, |a|, |b|)

[
|δ+x e|2h + |δ+y e|2h + h4

]
,

which gives the conclusion of the theorem for |δ+x e|h+|δ+x e|h by the Gronwall inequality.
The estimate for |e|h now follows from the discrete Poincaré inequality. �.

Remark: Note that the error estimate (4.15) is directly linked to the truncation
error T = O(h2).

5 Numerical Results

We present here several problems, towards which we applied our scheme. In the first
test problem we take an exact solution to (2.2) (see[5]).

(5.1) ψ(x, y, t) = −0.5e−2νt sinx sin y, 0 ≤ x, y ≤ π.

We have picked ν = 1. Table 1 summarizes the error, e, and the relative error, er,
where

el2 = ‖ψcomp − ψexact‖l2 ,
er = e/‖ψexact‖l2

and
eu = max|ucomp − uexact|.

Here, ψcomp,ucomp and ψexact,uexact are the computed and the exact streamfunction
and x− component of the velocity field, respectively. We represent results for different
time-levels and number of mesh points.

mesh 17 × 17 Rate 33 × 33 Rate 65 × 65

t = 1 el2 2.437 ∗ 10−5 4.05 1.394 ∗ 10−6 3.93 9.114 ∗ 10−8

er 2.134 ∗ 10−4 1.349 ∗ 10−5 8.371 ∗ 10−7

eu 2.797 ∗ 10−5 4.00 1.749 ∗ 10−6 4.00 1.093 ∗ 10−7

t = 2 el2 3.180 ∗ 10−6 3.78 2.322 ∗ 10−7 4.07 1.319 ∗ 10−8

er 2.232 ∗ 10−4 1.334 ∗ 10−5 8.736 ∗ 10−7

eu 4.254 ∗ 10−6 4.00 2.663 ∗ 10−7 4.00 1.665 ∗ 10−8

t = 3 el2 4.289 ∗ 10−7 3.97 2.738 ∗ 10−8 3.90 1.831 ∗ 10−9

er 2.235 ∗ 10−4 1.400 ∗ 10−5 8.750 ∗ 10−7

eu 6.199 ∗ 10−7 4.00 3.882 ∗ 10−8 4.00 1.677 ∗ 10−9

t = 4 el2 7.864 ∗ 10−8 4.00 4.925 ∗ 10−9 4.27 1.831 ∗ 10−9

er 2.224 ∗ 10−4 1.400 ∗ 10−5 8.750 ∗ 10−7

eu 9.019 ∗ 10−8 4.00 5.648 ∗ 10−9 4.00 3.530 ∗ 10−10
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Table 1: Streamfunction formulation: Compact scheme for problem (1)- l2 error,
relative l2 error and max error in the horizontal component of the velocity field.

Similar results are shown for the solution ψ = e−t(x2+y2)2 of the non-homogeneous
problem

∂(∆ψ)

∂t
+ (▽⊥ψ) · ▽(∆ψ) = ∆2ψ − 16e−t(x2 + y2 + 4),

for 0 ≤ x, y ≤ 1. Table 2 displays the error, e, and the relative error, er, and eu
(the same quantities as in Table 1). We represent results for different time-levels and
number of mesh points, and see that the convergence rate is around 2.

mesh 17 × 17 Rate 33 × 33 Rate 65 × 65

t = 0.25 el2 6.202 ∗ 10−5 1.986 1.564 ∗ 10−5 2.003 3.903 ∗ 10−6

er 8.176 ∗ 10−5 1.895 ∗ 10−5 4.535 ∗ 10−6

eu 2.070 ∗ 10−4 1.986 5.224 ∗ 10−5 2.002 1.304 ∗ 10−5

t = 0.5 el2 7.632 ∗ 10−5 2.000 1.908 ∗ 10−5 2.002 4.762 ∗ 10−6

er 1.030 ∗ 10−4 2.368 ∗ 10−5 5.671 ∗ 10−6

eu 2.572 ∗ 10−4 2.000 6.431 ∗ 10−5 2.003 1.605 ∗ 10−5

t = 0.75 el2 7.896 ∗ 10−5 2.007 1.964 ∗ 10−5 2.002 4.904 ∗ 10−6

er 1.091 ∗ 10−4 2.498 ∗ 10−5 5.984 ∗ 10−6

eu 2.667 ∗ 10−4 2.001 6.664 ∗ 10−5 2.008 1.657 ∗ 10−5

t = 1 el2 7.818 ∗ 10−5 2.007 1.945 ∗ 10−5 2.002 4.856 ∗ 10−6

er 1.110 ∗ 10−4 2.535 ∗ 10−5 6.072 ∗ 10−6

eu 2.643 ∗ 10−4 2.007 6.576 ∗ 10−5 2.002 1.642 ∗ 10−5

Table 2: Streamfunction formulation: Compact scheme for ψ = e−t(x2 + y2)2 with
RHS f = −16e−t(x2 + y2 + 4) on [0, 1] × [0, 1] - l2 error, relative l2 error and max

error in the horizontal component of velocity field.

We turn now to the class of driven cavity problems, which has been used for bench-
mark test problems by many authors. In particular, we compare our results to the
steady state results of Ghia, Ghia and Shin [10]. First we show numerical results
for ν = 1/400. Here the domain is Ω = [0, 1] × [0, 1] and the fluid is driven in the
x−direction on the top section of the boundary (y = 1). Thus, u = 1, v = 0 for y = 1,
and u = v = 0 for x = 0, x = 1 and y = 0. In Table 3 we present computational
quantities for different meshes and time-levels. We show ψΩ,t = maxΩ ψ(x, y, t), (x̄, ȳ),
where (x̄, ȳ) is the point where ψΩ,t occurs, and ψΩ,t = minΩ ψ(x, y, t). The meshes
are of 65 × 65, 81 × 81 and 97 × 97 points and the time levels are t = 10, 20, 40, 60.
Note that the highest value of the streamfunction at the latest time step is 0.1136.
Here the maximum occurs at (x̄, ȳ) = (0.5521, 0.6042), and the minimal value of the
streamfunction is −6.498∗10−4. Note that ψΩ,t in Table 3 has been stabilized at t = 40.
The location (x̄, ȳ) of the primary vortex remains constant from t = 20 and on. In [10]
ψΩ,t = 0.1139 occurs at (0.5547, 0.6055), and the minimal value of the streamfunction
is −6.424 ∗ 10−4. Figure 2a displays streamfunction contours at t = 60, using a 97× 97
mesh. In Figure 4a we present velocity components u(0.5, y) and v(x, 0.5) (solid lines)
at T = 60 compared with values obtained in [10] (marked by ’0’), for ν = 1/400. Note
that the match between the results is excellent.
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time quantity 65 × 65 81 × 81 97 × 97

10 maxψ 0.1053 0.1057 0.1059
(x̄, ȳ) (0.5781, 0.6250) (0.5750, 0.6250) (0.5833, 0.6354)
minψ −4.786 ∗ 10−4 −4.758 ∗ 10−4 −4.749 ∗ 10−4

20 maxψ 0.1124 0.1128 0.1130
(x̄, ȳ) (0.5625, 0.6094) (0.5625, 0.6125) (0.5521, 0.6042)
minψ −6.333 ∗ 10−4 −6.371 ∗ 10−4 −6.361 ∗ 10−4

40 maxψ 0.1131 0.1134 0.1136
(x̄, ȳ) (0.5625, 0.6094) (0.5500, 0.6000) (0.5521, 0.6042)
minψ −6.513 ∗ 10−4 −6.5148 ∗ 10−4 −6.498 ∗ 10−4

60 maxψ 0.1131 0.01134 0.1136
(x̄, ȳ) (0.5625, 0.6094) (0.5500, 0.6000) (0.5521, 0.6042)
minψ −6.514 ∗ 10−4 −6.5155 ∗ 10−4 −6.498 ∗ 10−4

Table 3: Streamfunction Formulation: Compact scheme for the driven cavity problem,
Re = 400. [10]’s results: maxψ = 0.1139 at (0.5547, 0.6055), minψ = −6.424 ∗ 10−4.

In Table 4 we show the same flow quantities as in Table 3, but for ν = 1/1000 at
t = 20, 40, 60, 80. The grids are of 65 × 65, 81 × 81 and 97 × 97 points. Note that
with each of the meshes the flow quantities tend to converge to a steady state as time
progresses. At the latest time level on the finest grid the maximal value of ψ is 0.1178,
compared to 0.1179 in [10]. The maximum is obtained at (x̄, ȳ) = (0.5312, 0.5625),
compared to (0.5313, 0.5625) in [10]. The minimum value of the streamfunction is
−0.0017, same as in [10]. Figure 2b displays streamfunction contours at t = 80, using a
97×97 mesh. In Figure 4b we present velocity components u(0.5, y) and v(x, 0.5) (solid
lines) at T = 80 compared with values obtained in [10] (marked by ’0’), for ν = 1/1000.
Note again the excellent match between the results.

time quantity 65 × 65 81 × 81 97 × 97

20 maxψ 0.1129 0.1139 0.1143
(x̄, ȳ) (0.5469, 0.5781) (0.5375, 0.5750) (0.5417, 0.5729)
minψ −0.0015 −0.0015 −0.0015

40 maxψ 0.1160 0.1169 0.1175
(x̄, ȳ) (0.5312, 0.5625) (0.5250, 0.5625) (0.5312, 0.5625)
minψ −0.0017 −0.0017 −0.0017

60 maxψ 0.1160 0.1171 0.1177
(x̄, ȳ) (0.5312, 0.5625) (0.5250, 0.5625) (0.5312, 0.5625)
minψ −0.0017 −0.0017 −0.0017

80 maxψ 0.1160 0.1172 0.1178
(x̄, ȳ) (0.5312, 0.5625) (0.5250, 0.5625) (0.5312, 0.5625)
minψ −0.0017 −0.0017 −0.0017

Table 4: Streamfunction Formulation: Compact scheme for the driven cavity problem,
Re = 1000 [10]’s results: maxψ = 0.1179 at (0.5313, 0.5625), minψ = −0.0017.

Results for ν = 1/3200 on a 81×81 mesh and a 97×97 mesh are shown in Table 5.
At the latest time level on the finest grid the maximal value of ψ is 0.1174, compared
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to 0.1204 in [10]. The latter is obtained at (x̄, ȳ) = (0.5208, 0.5417), compared to
(0.5165, 0.5469) in [10]. The minimum value of the streamfunction is −0.0027, where
[10] reports on −0.0031. Figure 3a displays streamfunction contours at t = 360, using
a 97 × 97 mesh. In Figure 5a we present velocity components u(0.5, y) and v(x, 0.5)
(solid lines) at T = 360 compared with values obtained in [10] (marked by ’0’), for
ν = 1/3200. There is an excellent match.

time quantity 81 × 81 97 × 97

40 maxψ 0.1157 0.1145
(x̄, ȳ) (0.5125, 0.5500) (0.5104, 0.5417)
minψ −0.0024 −0.0025

80 maxψ 0.1152 0.1154
(x̄, ȳ) (0.5125, 0.5375) (0.5208, 0.5417)
minψ −0.0026 −0.0027

160 maxψ 0.1155 0.1169
(x̄, ȳ) (0.5125, 0.5375) (0.5208, 0.5417)
minψ −0.0026 −0.0027

200 maxψ 0.1155 0.1172
(x̄, ȳ) (0.5125, 0.5375) (0.5208, 0.5417)
minψ −0.0027 −0.0027

240 maxψ 0.1156 0.1173
(x̄, ȳ) (0.5125, 0.5375) (0.5208, 0.5417)
minψ −0.0027 −0.0027

360 maxψ 0.1156 0.1174
(x̄, ȳ) (0.5125, 0.5375) (0.5208, 0.5417)
minψ −0.0027 −0.0027

Table 5: Streamfunction Formulation: Compact scheme for the driven cavity problem,
Re = 3200 [10]’s results: maxψ = 0.1204 at (0.5165, 0.5469), minψ = −0.0031.

Finally, in Table 6 we display results for ν = 1/5000. At the latest time level on the
finest grid the maximal value of ψ is 0.1160, compared to 0.11897 in [10]. The location
of the maximal value is (x̄, ȳ) = (0.5104, 0.5417), compared to (0.5117, 0.5352) in [10].
The minimum value of the streamfunction is −0.0029, where the value −0.0031 was
found in [10]. Figure 3b displays streamfunction contours at t = 400, with a 97 × 97
mesh. In Figure 5b we present velocity components u(0.5, y) and v(x, 0.5) (solid lines)
at T = 400 compared with values obtained in [10] (marked by ’0’), for ν = 1/5000.
Note the excellent match in this case too.
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time quantity 81 × 81 97 × 97

40 maxψ 0.0936 0.0983
(x̄, ȳ) (0.4875, 0.6125) (0.5114, 0.6146)
minψ −0.0029 −0.0030

80 maxψ 0.1007 0.1010
(x̄, ȳ) (0.5000, 0.5125) (0.5312, 0.5312)
minψ −0.0027 −0.0029

120 maxψ 0.1060 0.1068
(x̄, ȳ) (0.5125, 0.5375) (0.5104, 0.5417)
minψ −0.0028 −0.0028

160 maxψ 0.1095 0.1105
(x̄, ȳ) (0.5125, 0.5375) (0.5104, 0.5312)
minψ −0.0028 −0.0028

200 maxψ 0.1117 0.1127
(x̄, ȳ) (0.5125, 0.5375) (0.5104, 0.5312)
minψ −0.0028 −0.0029

240 maxψ 0.1131 0.1141
(x̄, ȳ) (0.5125, 0.5375) (0.5104, 0.5417)
minψ −0.0028 −0.0029

280 maxψ 0.1139 0.1150
(x̄, ȳ) (0.5125, 0.5375) (0.5104, 0.5417)
minψ −0.0028 −0.0029

400 maxψ 0.1149 0.1160
(x̄, ȳ) (0.5125, 0.5375) (0.5104, 0.5417)
minψ −0.0028 −0.0029

Table 6: Streamfunction Formulation: Compact scheme for the driven cavity problem,
Re = 5000 [10]’s results: maxψ = 0.11897 at (0.5117, 0.5352), minψ = −0.0031.

We also investigated the behavior of the flow for ν = 1/7500 and ν = 1/10000. Here,
the initial flow was taken from the results of ν = 1/5000 at T = 400. For ν = 1/7500
at T = 560 with a 97×97 mesh, the maximal value of ψ is 0.1175, compared to 0.11997
in [10]. The location of the maximal value is (x̄, ȳ) = (0.5104, 0.5312), compared to
(0.5117, 0.5322) in [10]. The minimum value of the streamfunction is −0.003, where
the value −0.0033 was found in [10]. Figure 6a displays streamfunction contours and
Figure 7a represents velocity components u(0.5, y) and v(x, 0.5) (solid lines) compared
with values obtained in [10] (marked by ’0’). The match is excellent.

For ν = 1/10000 at T = 500 with a 97 × 97 mesh, the maximal value of ψ is
0.1190, compared to 0.1197 in [10]. The location of the maximal value is (x̄, ȳ) =
(0.5104, 0.5312), compared to (0.5117, 0.5333) in [10]. The minimum value of the
streamfunction is −0.0033, where the value −0.0034 was found in [10]. Figure 6b dis-
plays streamfunction contours and Figure 7b represents velocity components u(0.5, y)
and v(x, 0.5) (solid lines) compared with values obtained in [10] (marked by ’0’). Note
again that the match between the computed u(0.5, y) and v(x, 0.5) at T = 500 and
[10]’s results is excellent. However, a steady state has not been reached, as we can ob-
serve from Figure 8b, which represents the maximal value of the streamfunction from
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Figure 2: Driven Cavity for Re = 400, 1000 : Streamfunction Contours

T=400 to T = 500, ν = 1/10000. A similar plot- Figure 8a- shows that for ν = 1/7500
the same quantity grows monotonically toward a steady-state, while for ν = 1/10000
we observe that it grows non-monotonically. A similar phenomena was observed for
ν = 1/8500, in agreement with [17] and [12]. Therefore, it seems that in [10] a steady
state solution was computed, however the solution of the time-dependent problem does
not tend to a steady state. A similar phenomenon was observed in [17], [12], [19]. It is
commonly interpreted as an indication that, while a steady state solution is computed
in [10] for high Reynolds numbers, they are unstable and experience a Hopf bifurcation
into time-periodic solutions. The rigorous analysis proving this bifurcation has not yet
been performed.

A similar problem, that we considered, has the same geometry Ω, but here the fluid
is driven also in the negative y−direction at the left-end of Ω. Thus, u = 1, v = 0
for y = 1, u = 0, v = −1 for x = 0, u = v = 0 for x = 1 and y = 0. We picked
ν = 1/400, 1/1000, 1/3200, 1/5000 and started the flow impulsively from zero. Figures
9a-9b and 10a-10b represent the streamfunction at t = 100 for the various viscosity
coefficients, respectively. Note that at ν = 1/3200 we start to observe symmetry
breaking with 81 × 81 and 97 × 97 meshes. Numerical results by Pan and Glowinski
[17] indicate the same phenomena for 1/ν between 4000 and 5000. In Figures 11a-b the
maximum of the streamfunction from T = 0 to T = 200 is displayed, for Re = 3200
and Re = 5000, respectively. A closer look to T = 400 shows that no steady state is
achieved for both cases. Figures 12a-b shows the same quantities as in Figures 11a-b,
for for T = 200 to T = 400
Acknowledgements. Supported in part by funds from the Israel Science Foundation
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Streamfunction Contours, Re=5000, T=400, mesh 97X97
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Figure 3: Driven Cavity for Re = 3200, 5000 : Streamfunction Contours
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Figure 4: Driven Cavity for Re = 400, 1000 : Velocity Components. [10]’s results are
marked by ’0’
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Figure 5: Driven Cavity for Re = 3200, 5000 : Velocity Components. [10]’s results are
marked by ’0’
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Figure 6: Driven Cavity for Re = 7500, 10000 : Streamfunction Contours, (a):
max ψ = 0.1175, [10]’s 0.11998; location is (0.5104, 0.5312), [10]’s (0.5117, 0.5322);
minψ = −0.0030, [10]’s = −0.0033. (b): max ψ = 0.1190, [10]’s 0.1197; location is
(0.5104, 0.5312), [10]’s (0.5117, 0.5333); minψ = −0.0033, [10]’s = −0.0034.
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Figure 7: Driven Cavity for Re = 7500, 10000 : Velocity Components. [10]’s results are
marked by ’0’
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Figure 8: Driven Cavity for Re = 7500, 10000 : Max Streamfunction, T=400 to 500.
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Figure 9: Double Driven Cavity for Re = 400, 1000 : Streamfunction Contours
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Figure 10: Double Driven Cavity for Re = 3200, 5000 : Streamfunction Contours
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Figure 11: Double Driven Cavity for Re = 3200, 5000 : Max Streamfunction, T=0 to
200.
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Figure 12: Double Driven Cavity for Re = 3200, 5000 : Max Streamfunction, T=200
to 400.
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