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Abstract. This paper is devoted to the analysis of a new compact scheme for the Navier-Stokes equations
in pure streamfunction formulation. Numerical results using that scheme have been reported in [2]. The
scheme discussed here combines the Stephenson scheme for the biharmonic operator and ideas from box-
scheme methodology. Consistency and convergence are proved for the full nonlinear system. Instead
of customary periodic conditions the case of boundary conditions is addressed. It is shown that in 1D
the truncation error for the biharmonic operator is O(h*) at interior points and O(h) at near-boundary
points. In 2D the truncation error is O(h?) at interior points (due to the cross-terms) and O(h) at near-
boundary points. Hence the scheme is globally of order four in the 1D periodic case and of order two in
the 2D periodic case, but of order 3/2 for 1D and 2D non periodic boundary conditions. We emphasize
in particular that there is no special treatment of the boundary, thus allowing robust use of the scheme.
The finite element analogy of the finite difference schemes is invoked at several stages of the proofs, in
order to simplify their verifications.

Keywords: Finite-difference compact schemes - Stephenson scheme - Box schemes - Finite elements -
Navier-Stokes equations - Streamfunction formulation - Biharmonic problem - Fourth order problem.

1 Introduction

In a recent paper [2] we have presented a fourth-order compact scheme for the pure streamfunction
formulation of the two-dimensional (incompressible) Navier-Stokes equations. We have given there a
convergence analysis for the linearized model. In this paper we prove the convergence of the nonlinear
scheme, without any further assumptions. Recall that the pure streamfunction formulation of the (2-D)
Navier-Stokes equations is classical [14]. It has the advantage of reducing the system to a single evolution
equation for the scalar streamfunction having the form

(1) 6?—;” + Vi - VAY —vA%Y) = 0.

The velocity field is (u,v) = V+t¢ = (—%, g—f), and the vorticity is w = Avy. The price to pay for the
reduction of the system to a single equation is the necessity to deal with the biharmonic A? operator.
There are therefore two boundary conditions imposed on 1. For the typical ”no-leak no-slip” conditions
(vanishing velocity on the fixed boundary) we have

(2) Vi =0, on the boundary.
Since the function v is only determined up to a constant, condition (2) is equivalent to

oy
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which will be the case treated in this paper, for simplicity. Clearly (2) is equivalent to the assumption
¢ € HZ, the closure of smooth compactly supported test functions in the Sobolev space of functions
having square-summable derivatives up to second order.

Our scheme can be described as follows (see [2] for details). At each time step the scheme solves a
time implicit version of (1). This leads to a fourth order biharmonic problem of the form

(4) A —vA*Y = f,

subject to the boundary conditions (2).
The spatial discretization of (4) makes use of the Stephenson scheme for the the biharmonic operator
introduced in [18], [11]. See also [1]. This scheme can be interpreted as a mixed scheme in (¢, V),



similar in form to a version of a box-scheme, [13], [6]. More specifically, its design is obtained by a spline
collocation procedure on a nine-point stencil, which we recall in Section 3 below.

The streamline-vorticity formulation has been extensively used for the simulation of the two-dimensional
Navier-Stokes system. As representative references we mention [16], [7], [4], [8], [12] and references there.
One difficult point is that ”...the 1 — w system is inextricably coupled; BC’s and solution methods must
contend with this fact...” [9, pp 431]. Indeed, one must cope with the vorticity boundary values, result-
ing from the fact that the relation Ay = w is overdetermined under the condition (2). An attempt to
avoid this difficulty has been made in [3], where the need to determine these values was circumvented
by switching to the biharmonic equation (at each time step), exploiting the natural condition (2). The
scheme presented in [2], whose convergence is proved here, has avoided all explicit mention of the vorticity
by using a pure streamfunction formulation. We mention that recently in [10] a very similar algorithm
has been proposed, but it deals only with the steady-state Navier-Stokes system.

The paper is organized as follows. First, we introduce in Section 2 our notation and the setup for
our discrete spaces. Then we establish in Sections 3, 4 the necessary analytic properties of the scheme
in 1-D and 2-D. In particular, in analogy with the coercivity of A? in HZ, we prove the coercivity of
the discretized biharmonic operator in a suitable discrete analogue of HZ. We prove that the truncation
error of the biharmonic scheme is of order four in 1-D, and two in 2-D, at all interior points and of first
order at near-boundary points, giving a 3/2 order of convergence rate in the natural discrete L? norm.
Note that in the periodic case all points are interior. Then in Section 5, we prove that the same order
of convergence extends to the spatial semi-discrete version of the full nonlinear scheme. We emphasize
the fact that we do not need any special treatment of boundary points, and the boundary condition (2)
is naturally incorporated here. As mentioned above, this causes a reduced (from 4 to 1) order of local
truncation error at the boundary, and is reflected in the fact that our result yields a 3/2 convergence
rate in the discrete L2 norm. The present convergence result can be compared to the convergence results
obtained in [8], [12]. In both these papers, the time evolution is performed on the vorticity, hence a
very careful treatment of the vorticity boundary conditions is required, either by ”ghost-points” [8] or
by replacing the condition (2) on the normal derivative of the streamfunction by boundary conditions on
the vorticity ([12]) (which, as these authors observe, amounts to an algorithm for vorticity generation on
the boundary).

2 Discrete spaces and basic inequalities

Let 0 < 4,5 < N. We denote by (ih, jh) a FD mesh on the square [0, 1], with equal mesh size h = 1/N
in the z and y directions. We note u; ; a grid function on [0,1]?, with 0 < i,j < N. The centered and
upwind derivative operators §,, dF are defined as usual in each direction by

uzv.] - ui_l’j

ui“l‘lyj - ui_lij + ui“l‘lvj - uly] -
(5) OUij = — —op— 5 OgUiy =, Uiy =,
and similarly in the y direction:
Wiyjt1 = Wij—1 + Wipj1 = Wi - Uiy — Wiyj—1
(6) Oyuij = —"———— 5 Oyuij =TT Ui =
The centered second order derivatives are
) Sy = Wit Flicng = i g ;= Uil + i1 — 2ui
z %, h2 [ A D) h2 :
The five-points Laplacian is
Uig1,j + Ui—1,5 + Us 41 + Ui j—1 — dug;
— 52, . 2, . _ Sitlyj i—1,j 4j+1 4,j—1 %,J
(8) Apuij = Ozui; + O ui; = h2 :
The crossed derivative operators 6;ry, Ogys Ouy are
+ ., st Wil 41 i+1,j i,J+1 .J
(9) 6zyu1,.7 - 51 6y Uij = h2 )



_ Ui — U1 — U1, t U151

(10) Ogyiyj = 070y usj = ® ’
Wit1,j4+1 = Wi—1,j41 = Wit1,j—1 + Ui—1,j—1

(11) Oaytti,j = Oalyuij = —— e —

It is easy to check that

(12) 5§5§ui,j = ijdz_yu,-,j.

The L2 space is the space of sequences u; ;, 0 < 4,5 < N. L%,O is the subspace of u; ; with zero boundary
conditions u; j = 0 for i € {0, N} or j € {0, N}. The scalar product on L , is

N—1
(13) (u,v)h = h2 Z U3,5V4,5-
i,j=1
with the corresponding norm
N—-1 1/2
(14) |u|h = {h2 Z (ui,j)Q} .
i,j=1

Furthermore, we denote by {2 the space of sequences u;, 0 < i < N, and l%,o the subspace of sequences
with zero boundary conditions. The scalar product and the norm on l%,o are

N-1 N—1 1/2

(15) (u,v)h:hZuivi , Julz = {hZuf} .
i=1 i=1

We also define the discrete infinity norm

(16) [t]oo,n = max|u;|.

We skip the proof of the following lemma, which states the discrete integration by parts in L%,o

for the operators 83, 5. For each grid function u € L3 ;, we denote the 1-D column vector u/ =

[ul,j,uz,j,...,uN_l’j]T ,1<j<N-1.

Lemma 2.1 (Discrete integration by parts) For any u,v € L}, ;, we have

(17) (@) (6Fu,v)p = —(u,d;v)p.

(18) (i) (62u,v)p = — (0 u, 6 v)p = — (6, u, 8, v)p.
Note that in (17,18), the F.D. operators are extended to the points i = 0,7 = N by
(19) (S;tUo = 6;tuN =0 ; (53110 = 63111\[ =0.

Observe that this assumption is only for notational convenience, in order to have formally §u, 62u € L,QZ,O.
Results similar to (17, 18) in the y direction are obtained by substituting the subscript y to the subscript
z. The following lemma is the counterpart of the Poincaré inequality at the discrete level

Lemma 2.2 (Discrete Poincaré inequality) For all u € l}%,o and any 1 < j < N —1,

(20) [ | < 2165 |-



Corollary 2.1 For allu € L3 ,

1/2
(21) luln < V2[I5Ful} + 67 ul2].

Proof:
For all u € I}, ;, we have

N-1
(22) uly =h Y ui.

i0=1

Forall 1 <ipg <N —1,

i0—1 i0—1
wp = > (g — i) (i +wi) = Y hdTui(uipr +ug) = (5w, u + Su)p
=0 i—0

< 2|5:u|h|u|h.

where (Su); = ujq1, j =0,.., N — 1. Therefore,

N-1
(23) Juli, = kY ui, < 2167 ulnluln,
10=1

which gives (20).
Now for all u € Lj ;, we have

N-1 N—1
(24) Julfy = B Y [ <20y 85w

Jo=1 Jo=1

N-1 N-1
< 20 hlEFu )YV Bl )

Jo=1 Jo=1
< 2|5:u|h|u|h.

In a similar way, we obtain in the y direction
(25) ulf, < 2[6F uln|uln-

Summing (24) and (25), we obtain (21). |

3 The Stephenson scheme in 1-D

3.1 Design by collocation

Consider the 1-D biharmonic equation

W(z) = f(2)
(26) { Z(O)iu(l)iuz(o) =us(1) =0

Suppose that at each node z; = jh, 0 < j < N, of a finite difference grid, there are two unknowns u; and
uz,j, approximating respectively u(xz;) and u,(x;), which is referred to a “mixed scheme”. The values u;,
ug,; are solutions of the linear system, designed by the following Galerkin-collocation method. At each
interior node j, 1 < j < N — 1, we consider a 4th order polynomial, with domain [2;_1,%;4+1]

(27) Q(x) = ap + a1(z — ;) + az(x — 2;)? + az(x — x;)® + as(z — ;)*.



The five coeflicients ax, k € {0,1,2,3,4} are defined by the five collocation conditions on the compact
stencil {z;_1,2;,Tj+1}

(28) { Ql(xj_1) =uj-1 ; Q(HJ{) =u; 5 Q@jt1) =ujp
Q' (zj—1) =Usj—1 ;5 Q'(Tjt1) = Ugj41.
The five coefficients of the unique polynomial (27), solution of (28), are given by
[ ag = uj,
a; = §5zuj - Z(ua:,j-i-l + Uz 1),
(29) § @2 = =50
a5 = 35 (a; — us5) = Z(350);,
1 [ 5
a4 = — | (0zuz); — 0 UG]
{ 2h2 zHT /] f e}

Now, since Q'(z;) = a1 and Q""'(z;) = 24ay, it is natural to define the following compact scheme: find
[0, Uty +eery UN—1, UN], [Uz,0, Uz 1, o0y Uz, N—1, Uz, N] € [; o Which solve

(P:cuw)j = (szuja 1<j<N-1 (a)7
(30) Spuj = f(z;) 1<j<N-1 (b),
U =UL = Uy =Uyny =0 (c),

where the operators P,, 64 are respectively defined in (31), (34).
For u € I}, , the operator P, is defined by

1 2 1 .
(31) (Pyu); = g1 + Ui + g+ ,1<j<N-1.
P, will be referred as the Simpson operator in the x direction, because the coefficients in (30) are the
ones of the Simpson quadrature formula over [z;_1,%;4+1]. Note also that

h2
(32) P,=1+ E(Sg

We also note that the connection (30)(a) is already given in the classical book by Collatz [5, Ch. III, Eq.
2.9]. We call S the discrete space of grid functions (u,u,) € I} o X I},

(33) S = {(u,ug) € I o such that Pyu, = 6,u}.

In (30), we define the Stephenson discrete biharmonic to be the compact difference operator given on S
by
12

(34) Jiuj = ﬁ{(ézuz)J - 53%} ; 1 S] S N —1.

This is a 1-D version of the original scheme proposed by Stephenson in [18]. Note that for simplicity, we
will refer in the sequel to a grid functions in S by v € S, meaning that it is the first component of a pair
(u,ug) €S.

Remark: We note that the implicit scheme (30)(a) defining the grid function u, as a function of u is
exactly the one obtained in the piecewise cubic spline interpolation, see e.g. [17] . The classical question
that occurs in spline interpolation about fixing the two degrees of freedom u, g, u;,n at end points is
here pointless, since they are precisely given in (30)(c)



Uj—1 Uuj Uj+1
Ug,j—1 Uz, j+1

Figure 1: Stephenson’s scheme for u(*) = f: The finite difference operator d%u; at point j is Q™ (z;)
where Q(z) € P*[z;_1,7;41] is defined by the 5 collocated values for u;_1, Uj, Wji1, Uz j—1, Uz, j+1-

3.2 Consistency

On a periodic grid, the order of consistency can be obtained by a simple Taylor expansion at point z;.
Equivalently, one can compute the symbol of the operators. Recall that in the context of finite-difference
operators, we have to use the semi-discrete Fourier transform, see e.g. [19]. In practice, if the values of
the periodic grid function (u;) are represented by €*/", then the symbol of the linear operator Ly, is 1 (€)
defined by

(35) Lhu]' = lh(f)u]'.

Furthermore, if [(£) is the symbol of L, then, the order of consistency is given by the greatest value p > 0
such that, (see [19]),

(36) In(§) = 1(€) = O(hP).
Doing so, it is quite easy to verify that the Stephenson gradient is 4th order accurate as well as the
biharmonic operator (34). Indeed, we verify that
e The symbol of the discrete operator u, in (30)(a) is
1

(37) gn(€) = i€ — i€’ h* + O(h®),

180
so that the order of accuracy with respect to the operator d,, whose symbol is ¢ is
(38) 9n(€) — i€ = O(h").
e The symbol of the discrete operator §3u in (34) is
(39) d(€) = €'+ O(hY),
so that the order of accuracy with respect to 9% is
(40) dp () — (i6)* = O(h*).

On a finite grid with homogeneous boundary conditions at the two ends, we have to perform a more
careful analysis, because the symbolic computation no longer holds in this case.

Lemma 3.1 Suppose that u(z) is a regular function on [0,1]. Then, the finite difference gradient u,
defined from the values u(z;), 0 < j < N by (Pyug); = d,u(z;) has a truncation error (ug); — u'(z;) of
order 4 at each point x;. More precisely,

(41) [(ua); — u'(z;)] < Ch*u® | o [0,1)-



Proof: The Stephenson gradient u, is defined in the space I} , by
(42) (Poug)j = (6zu); , 1<j<N-1

where P, is the N — 1 x N — 1 matrix-operator acting on 1121,0 as defined in (31), that is

2 1 g 0
1 2 1
6 3 6
(43) P=| -
0 102 1
0 R
6 3

Consider a regular function u(z), differentiable as much as needed, and denote by w/, u",..., u(® its
derivatives. At each point z;, 1 < j < N — 1, the Taylor formula gives, (we note u§-m) = (™ (z;))

" RS i © Sl I E) o) (e
(44 () (a3) = s+ oul® o+ L e ) + (et

where & €|z 1, ;[ and & €]zj,xj41[. Similarly, there exists & ; €l 1, [, &; €]z, o541 such
that

(45) 20)(ay) =+ 5[ + e

We deduce that, applying (45) to '
! ! h2 2 1
Oau(;) — Pou'(z) = Gou(z;) — |u'(z;) + = 05u'(z))
h? h*
= G+’ oy ( ®e) +u® (& ,)>

h? h?
- [u + 5 ( P ) +u® (e J)])]
= h4U]',
where the grid function v; is defined by

(46) = 55 (1906 + 0965 ) - o (406 + 06 ).

Therefore, the grid function u € I} ; verifies the identity

(47) Szu(z;) — Ppu! (z;) = h'vj.
On the other hand, u, €[} , is defined by

(48) Ozu — Ppug, = 0.
Subtracting (48) from (47), we obtain the identity in l%,o

(49) u' —u, = WP o,

where u' = [u/(21), ..., v/ (zn_1)]. Writing P, =1 + ’2—2(53, the inverse of P, is obtained by the Neumann
series
(50) Pt=3 (=),

k=0



which gives the estimate of |P;1|o.p

)

B e h2k e 2
(51) P oo <D e l0zlien < D(5)F =3
k=0 k=0

Observe that the matrix-operator §2 above is defined at the near boundary points j =1, j = N — 1 by

U2 — 2u1 UN—_—2 — 2’LLN_1
52 By = I Gy = MR
We deduce now from (49) and (51) that
(53) |t — tzoo,n < B P oo,n[V]o0,n < CH*|u®| o 10,1-

Lemma 3.2 Suppose that u(x) is a regular function on [0,1]. Then, the Stephenson biharmonic operator
8% defined by (34) has a truncation error 6%u —u®) of order 3/2 in the 1,21’0 norm

(54) |5;1U - U(4)|h < Ch3/2|u(6)|oo,[0,1],
where the notation u*) stands for
(55) u® =[u (21),..,u (zn_1)] € lho-

Remark: The difference in accuracy between the periodic case and the non-periodic case is only due to
the near boundary points 1 and N — 1.
Proof: Recall that the finite difference biharmonic operator 62 is the 3 points compact operator, expressed
in terms of v and u; by

12
(56) Stu; = 72 [6auq — Oul.
Here, we handle the finite difference operators acting on 1-D grid functions v = [ug,...,un—_1] , as
N — 1 x N — 1 matrices, see [2]. We can rewrite (30)(a) as

1
(57) Pou, = ﬁKU = 6zu € l}2l,07

where the antisymmetric matrix K = {Kj }1<i,m<n—1 is given by

. o= {0 iz
the operator §, is expressed as

(59) @:%K

In matrix form, (57) is simply written as

(60) Pyug = §,u or uy, = P16,

Using (34), the operator §2 can be rewritten in matrix form

o= (6P -

12 ~ _
= PyY(6,)? + [0, Py — P16, )6, — 02ul.

10



Applying the operator P, we obtain, for all u € [} ,

12
(61) P, [5;%; - u(4)] =33 [((sz)% + [Puby — 6, PP 0pu — Ppo?u| — Pou™ := o
Note that in (60-61), we refer to P, as the symmetric positive definite matrix, (see (32-43)),
%, m =1
(62) (Pr)im = 1/6, |m—i|=1
0, |m —i| > 2.
Clearly the commutator [P, K] = P,K — KP, is
_%7 1= .7 - 17
(63) (P,K—KP,);; =4 L~ i=j=N-1,
0, otherwise,
so that the commutator [P;,d,] = 57 [Ps, K] is
_&a i = .7 = ]-a
(64) Pyoy — 6, P, = 6L’ i:j:N_la
0, otherwise,

This means that the operators P, and §, do not commute and that the non-zero commutator values are
restricted to points j =1 and j = N — 1.
Let us first evaluate (61) at points j = 2,3,...N — 2.

12
2

12
(65) (6,)%uj — Ppo2uj| — Pult) = F{(‘Sz)Z“"
2 1 1
- [3(53'11,] + gégujﬂ + 662%1]}

2 (4 1 4 1 4
- [§U§ '+ 6“5-_)1 6“§-+)1]-
The first term in the RHS of (65) is

h2 (4) 32 (6) 128
" 4 6, (8) 8, (10
j + ?Uj + ah U]- + ?h uj + Ch U( )({7)

Using (45) for evaluating 62u,, at m = j — 1, j,j + 1, we find that P,02u; in (65) is

(66) (5m)2uj =u

2 1 1 1 1) 22 6) 86 8
(67) gdiﬂj + 65§Uj+1 + 65£Uj_1 = U‘Ijl + thug ) + ah%fé ) + ghﬁug ) + hswj
where |w;| < Clu19| [o,1). In addition, we have that the third line of the RHS in (65) is

2 1 1 1
(68) [§u§4) + guyl_)l + gug-i)l] = u§-4) + 6h2u§6) + Ch'z;

where |z;| < C|u(8)|oo,[0,1]. Therefore, we have, for 2 < j < N — 2

12
(69) |75 [62)%u = Pad2uj] = Pouf| < OB u®)] e .1

and this order is optimal. Consider now the truncation term for j = 1, (the computation is the same for
j =N —1). We have

Sdu), = 12 ) 52
(70) (Etuh = 3 [(Foua)s — 82ua].

11



Since |ug,; — uj| < Ch*u® |y (0,11, We have

_ Ug2  Ug2—Uzo
(71) (bpuz)1 = 5h = o
u'(z2) —u'(xo) .

oh + 0

I Lo 5
= u'(x1) + g U (1) + 0,

where @ stands for a generic term such that || < Ch®[u(® |y (0,1]- In addition, we have

h2
(72) (02u); = u"(z1) + ﬁu(4)($1) + w,
where
(73) lw| < Ch*u® o f0,1)-

Therefore (71), (73) show that the truncation error at the near boundary point z; is

12 .
(74) 7 (62uz)1 — (02u); | — u®(z1) = t;, with |t;] < Ch|u(5)|oo,[0’1].

We deduce from (61), (69), (74) that the truncation error e = d2u — u(® is solution of the linear system

(75) Pie=v , velgecly,

where P, is the matrix

1 0 0 0
R
(76) Po=1: i
0 s 3 @
0 0 0 1
and v is such that
(77) o], lon—1] < Chlu® | oy 5 0] < CH*u® g o), 5 =2..N —2.

By the Gerschgorin theorem, P, ! is a bounded matrix independent of h, therefore e = F;lv is such that

(78) leln < Cloln,
where
N—2
(79) lvlz < Ch(2k* + > h®) < Ch®.
j=2
Taking the square root in (79), we obtain (54). |

Remark: Note that the error at the interior points is fourth order and that the h3/2 error is fully due
to the lost of accuracy at the two boundary points j =1, j = N — 1.

12



3.3 Interpretation with finite elements

In this section, we establish the finite element counterpart of the scheme (30). This allows to obtain in
a simple way the stability of the Stephenson finite difference operator §2. To each grid function v € l,2170,

we match the function vy (z) in the finite element space Pcl’0
(80)

Pcl,0 = q vp(x) such that vy is continuous, linear in each [z, z;41],0 < j < N —1,vp(x0) = va(zN) = 0}
defined by wp(z;) = v;. Clearly, it is an isomorphism between I} ; and P},. In addition, starting

with v € l,zlio, we introduce the two piecewise constant functions v, and vy, defined in each interval
Kji1/2 =|zj, mjqa by

uj + uj Ujp1 — Uy
= _ % Jj+1 _ 4+l J
(81) Dh,jy1/2 = 5 s Unagi1/s =

An important aspect of using Pcl’0 in the study of finite difference schemes is that it allows to streamline
analytic operations like integration by parts or averaged quantities over intervals K 1o = [2j,2j41]-
The L?[0, 1] scalar product is denoted by

1
(82) (.0) = | e@i.

0
Writing the representation of up(z) in Kjy1/2 as (zj41/2 = 3(Tj-1 + 7;))-
(83) UR(Z) K,y )0 = Bhjt1/2 T Une,jr1/2(T — Tiy1/2),

we can compare different scalar products for (.,.), and in L?(0,1) as follows

Lemma 3.3 For any u,v € l,zz,o, let up(z),vn(x) € Ply be the corresponding finite element functions.
Then we have

(84) (@) (u,v)n = (un,vn) + }g(uh,zavh,z) = (@n,p) + %(Uh,zavh,z);
(85) (“) (5wuav)h = (uh,wavh)a
(86) (#74) (82u,v)p, = —(0Fu, 6 v)p = — (67 4,0, v)n = —(Un,z,Vnz) (see (18))

Proof:

The proof is an elementary computation resulting from the piecewise linearity of up(x) in each Kj 4/, =
[z, z;41] given by (83). In fact, it clearly suffices to check that (84),(85),(86) hold for up = @k, vh = Ym,
where () is a basis of P. [ |
Let (u,uy) € S. Since u, € l‘,zlyo, it has a matching function p; € Pcl,o. On the other hand, we have the
piecewise constant function uy ;. The connection between these two functions is given by the following
lemma.

Lemma 3.4 (i) Let u € S with grid gradient u, € l,%’o. Then the finite element function py(x) € P},
corresponding to u, is the orthogonal projection of the piecewise constant function up , onto Pcl,o. In
other words, it is the unique solution p;, € Pcl,0 of

(87) (Pr,qn) = (Une,qn) Van € Pl
In addition, we have, with qp € Pcl,0 corresponding to q € l,zl,o
(88) (Potazs @)n = (Pr, qn) = (Uas Po@)n-
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(ii) Let u,v € S and (upn,pn), (Vh,qn) € Pcl,0 X Pcl,o; are the matching finite element functions, then the
bilinear form < .;. > defined on S x S by

12
(89) <0 >p= (50,00 = 73 (uw = Phy Vhz = qh) = (u,030)n,

is a scalar product on S x S.
(i1i) Translated in terms of finite difference operators, (89) is

N-1
Ug,j+1 — Ug,j Vz,j+1 — Vg,j
90 — h 9, 9,
(90) < w,v>p ;0 - ;
N-1
12 Uj+1 — Uy 1 Vj+1 — V5 1
+ = Z h[% - i(uz,j +Uz,j+1)] [7] 7 L — E(Uz,j + Vz,j+1)
=0

Proof:
(i) The discrete gradient u, € l,QL0 is defined by

(91) [quz]j =du; ,1<j<N-1,

where P, is the Simpson operator given in (31). Eq. (91) is equivalent to

1
(92) (tz, @+ ch?(Guz, ) = (G, On Vg € ljg-

Taking any q € I} o and the py corresponding to u, € I} o, and using (84), (85) and (86), we can rewrite
(92) as
h2
(Unz,qn) = (G2t @) = (e D + 5 (O30, D
h? h?
= (ph>Qh.) + F(ph,w;qh,w) - F(ph,zth,z)
= (pha Qh)a

which gives (87). The symmetry of P, is clear from the definition, see (31), (62). In addition, we have

(93) (Pyuz, @)n = (021, @)n = (U2, qn) = (Ph,qn),

which proves (88).
(ii) The Stephenson biharmonic operator is, see (34),

12
(94) (5;111]' = ﬁ{(éz’u,z)] — dzu]}
We have
12 12 12
(95) (Sgu,v)n = 72 [(Ph,z, vR) + (Uh,z, Vhe)] = ﬁ[— (Ph, Vh,e) + (Uhe,Vhe)] = 72 (Uh,zauh,z —ph)-

Subtracting (g, un, — pr) = 0 from (95), we deduce

12
(96) < u,v >p= (63u,v)p = 72 (uh,m — PhsVh,z — t]h)-

We verify now that < u,u >,ll/2 is anorm on S. < u,u >p= 0 is equivalent to |up,; — pr| = 0. Therefore
the piecewise affine function py € Pcl’0 is actually piecewise constant. Since it vanishes at £ = 0 and is

14



continuous at any x;, we have p, = 0, which is up, = 0. Therefore uy is as well piecewise constant.
Since up,(0) = 0 we have also up, = 0.

Finally, we prove (90). Recall that for any ¢, € Pcl,o, the difference g, — @, is orthogonal to piecewise
constant functions. Thus, replacing in (96) pp, gn by Dy, q), respectively and noting, see (84), that

2

(97) (ph;Qh) = (ﬁh7ah) + E(ph,z;(Ih,z)a
we get
12 _ _
(98) <, 0 >p= (Ph,z>qh,e) + ﬁ(uh,z — Dh>Vh,e — Qh)s
which gives (90) using (81). |
Remarks:

The result of Lemma, (3.4)(ii) gives the uniqueness of the discrete solution of scheme (30).
The following lemma states the discrete counterpart of the equivalence of

(i) |uz| and ||u||g, for u € Hg.

(ii) |ugz| and ||u||g, for u € HE.

Lemma 3.5 There exist constants C, C', C", independent of h such that for any grid function u € S

(99) () |un| < |ulp < C|6Fulp = Clupe| (Poincaré inequality).
(100) (i) |6Fuln <C' <uu>”.
(101) (#id) |6 ugln < C" <uyu >3

Proof: Inequality (i) is simply the Poincaré inequality (21) in the 1-D setting, reformulated with the
finite element notation. Inequality (iii) follows directly from (98) since 6} u, = py , as piecewise constant
functions.

For (ii), we use the notation p for the grid function u, and, as before, denote by uy,, py the Pcl’0 functions
associated with u, p respectively. In view of (87), we have

(102) 16 ulh = [unsl” = (uno — DhyUnz — Pr) + (Pr,Dr)
h? 9
= 15 <wu>n +|pn|*,
where in the second equality we have used (96). Now, applying the Poincaré inequality (99) to p instead
of u, so that,

103 pr|? < Cl6Fp|2 < CC" < u,u >p,
z lh

where in the last inequality we have used (101). Inserting this inequality in (102), we obtain (100). N
Remarks:

1- We know that |uzz]o,0,1] is a norm on the Sobolev space H3. We may wonder if, at the discrete level,
|64 uz|n = |Ph,zlo,0,1] is @ norm on S. Actually it is a norm only if the number of points N is a even
integer. We have that py,, = 0 implies p, = 0. But the relation P,u, = d,u implies only §,u = 0 which
gives u = 0 only if N is an even integer.

2- For other finite difference schemes for the biharmonic problem and their link with the finite element
method, we refer to the book by Li & al, [15].
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3.4 Convergence of the Stephenson scheme
We derive now the following convergence result
Proposition 3.1 Let U be the P}, Lagrange interpolate of the exact solution u(z) of (26) and @ the

discrete solution of (30), then the following error estimate holds in the mesh dependent norm < ¥, >,11/ >

(104) <U—a@,U —a>°< CB?|f"|oo jo1s
where the constant C' is independent of h.

Proof: We estimate as usual the error by the sum of the approximation error and of the consistency

1/2

error. Here, we work with the discrete norm < .,. >},’”, so that there is no approximation error. We have

(105) <U—a,U—u>}L/2— sup <U——uv/>h
TES A0 < T, T >y
We have
N-—
(106) <U—a71~)>h= ((Si(U_ﬂ’)a’D)h:(J;U_faﬁ)h+(f_6ia U Z (54U f]

Therefore, in view of Lemma 3.5,

(107) | <U=@>,] < |60 = flaloln

CR*215n| " |oo.-

VANPVAN

Using that ||, < C < 0,9 >2/2, see (100, 101), we find that
(108) | <U =@, 0> | < OB < 5,5 >0 | |0 0115

which gives the result. |

4 The Stephenson scheme in 2D

4.1 The compact biharmonic scheme of Stephenson

We consider in this section the biharmonic problem in a square Q = [0, 1]

(109) Au(z,y) = Ou(z,y) + Jyu(z,y) + 205, u(z,y) = f(z,y) ; (z,y) €Q
U = g—z =0 ; onodf

For any f € L?(Q), the problem (109) has a unique solution v € HZ(Q2). Its discrete version, using the
Stephenson scheme, is to find a solution u; ; € L,zly0 to the equation

(110) { A2u;j = fziy;) 5 1<i,j<N-1
Uij = Ugij = Uyi; =0 ; for {i,j} € {0,N}

The Stephenson biharmonic operator A? is defined by

(111) Afuij = Gpttij + Oyui j + 26200u; 5.

For any u € L}, , the grid gradient (ug,u,) € (L 4)* is defined by

(112 { Py Zopury 202N
yUy,ij = OyUij , l1<9,5<
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where P, P, are the Simpson operators, see (31),

P, =1Id+ 1h25§
(113) )
Py = Id+ ch?s;.

The 1-D operators 6yu;,;, 6,u;; are given as functions of u, ug,uy by

12 12
(114) Spui = 72 (6auz)ij — (5§u)z’,j] ; Oyuig = h—Q[(%Uy)i,j — (83u)i |-

For the convenience of the reader, we recall briefly how the operator A? has been originally derived by
Stephenson, [18]. At each point (z;,y;) of the grid, 0 < i,j < N, are attached the 3 unknowns w; j, us i ;,
uy,;; as well as a 4th order polynomial P; ;, simply denoted P(z,y)

(115) P(z,y)= Y, amz'y™
zlym eV,
where the monomial set V is
(116) V= {1,z,y,2%, 9%, zy,2°, 2y, zy®, v, 2*, 22?0y}, #V =13.
The 13 coeflicients a;,, are uniquely determined by the following collocation conditions

¢ 9 collocations for u; , at points (x;,ym) for l € {i —1,i,5+1}, me {j — 1,4, + 1}.
(117) o 2 collocations for ugz j,m at points (i—1,j,¥i;), (Tit1,55Yi,j)-
e 2 collocations for uy i, at points (., Yi,j+1), (%ij, Yij—1)-

The collocation system gives a 13 x 13 linear system which can be solved explicitly. The result is given
by, [18]

Lemma 4.1 Denoting by ¢, O and Q' the finite difference operators

QUij = Uim1,j + Uig1,j + Uijt1 + Uij—1,
(118) Ougj = Wig1,j41 + Uig1,j—1 + Wi—1,j-1 + Ui—1 541,
!
O'i,j = Ug,it1,j — Us,i=1,j + Uy,ij+1 — Uy,ij—1-

the 13 coefficients a;,m of P(x,y) at point (x;,y;) uniquely determined by the 13 conditions (117) are

,

ag,0 = Ui, . \ 1
a0 = §(Sgguz‘,j - Z(Uz,z’+1,j +Upio1,;) 5, Qo1 = §5yuz.’j _ Z(uy,i,j+1 Fugag),
azo = 83ig = 5(6“%)’.’]' v 00,2 = 632/ui7j - 5(511“11)1',]' , a1 = Ogyti g,
1 1
(119) ) ao= §(5§Uw)i,j , ap3 = 6(65%)“
1
a1 = 5(5§6yu),~,]- , a2 = 5(5321595“)1,4_’
a —i((g 82 s —L(S e
4,0 — 2h2 zuz)m z Wi, j , Qo4 = oh2 ( yuy)z,g Wi |
1
\ G2,2 = Z((Sgézu)z,]

The gradient of P(xz,y) at (z;,y;) is (0: P(xs,y;), 0y P(xi,y;)) = (a1,0,00,1). Defining uz ; ; = Py(xi,y;),
Uy,i,j = Py(2i,y;), we obtain (112). Furthermore the operators &3, &, are defined by

(120) { Spuij = O P(2i,y;) = 24a4,,
Syuij = Oy P(xi,y;) = 24a0,4,
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which is (114). Finally the operator Afu; ; is defined by AZu; ; = A?P(z;,y;) = 24a4,0 + 8az 2 + 24ag 4,
which is (111). Furthermore, note that by expanding the finite difference operators, we find the following
expression for the biharmonic operator A2

1

2 _
Apugj = o

{56Ui,j = 16[ui1,j +wigpn +wicng + iio1] + 2[Uign g1 F i+ Uienion F Ui

+ 6h[(ue)it1,j — (Ue)io1,j + (uy)ijrr — (uy)ij]] }

4.2 Consistency and convergence for the elliptic operator
The order of consistency is deduced from the consistency in the 1-D case

Lemma 4.2 Let u be continuously differentiable up to 6'* order in Q and suppose that it vanishes, along
with its gradient on 8. Then, the truncation grid function e = A u(z;,y;) — A%u(wi,y;) € L%,o satisfies

(121) le|n < Ch*/2||0uSu|oo + |051]so + [Ot|oo + [0 tt]oo |-

Proof: We have
(122) |ARu — APul, < [6qu — Opuln + |0pu — yuln + 2|6202u — D207ulp-
Using the consistency result (54) row by row and column by column we obtain

(123) |64u — Opuln < Ch/2|05u| o 10,112,

(124) 63w — Oyuln < Ch/2|08ul o, (0,172
The consistency for the mixed term is deduced from (45)
(125) 0202w — 020, uln < CH?[|03ul0 + |0yuloo]-

|
In order to carry out convergence analysis, we need to develop discrete analogs of the basic differential
estimates, as in the 1-D case of Section 3. We do this in the framework of a suitable “finite-element”
space, namely, the Q! space of continuous functions in Q2 satisfying the following condition: In every cell
Kit1/2,j41/2 = [Ti, Tit1] X [Y5,yj+1], they are linear (separately) in x,y. Otherwise stated, it is (in every
cell) in Span(1,z,y,zy). The subspace of interest to us is Qi,o: consisting of functions (in Q!) vanishing
on 9N. Tt is clear how to match an element uy € Qi,o to a given u € Li,0§ we simply take the function
ag + a1z + asy + azry which interpolates the four values w; j, wiy1,j, Wi jt1, Uit1,j4+1- Since up(z,y) is
linear in z, (resp. in y) for every fixed value of y (resp. of ), we can in particular treat the function
u(z;,y;), for every fixed j, as a function of z; in I, ; and then associate with it the functions u, in [ ,
(see (30)) and up, pp their associated P}, functions.
Note that these functions are determined for each fixed value of y;. In the same way, we define the
piecewise constant in [x;,2;41] function wp 4(.,y;). We define also the analogous functions in the y-
direction. Finally, up 4y is the piecewise (in cells) constant function given by the coefficient as above.
We now equip an with two scalar products. Each of them corresponds to an L2(0,1) product in one
direction (i.e., the function is regarded as an element of Pcl,0 in that direction), followed by an l%,o product
in the other direction. They are given by

—~
3
>
<
=
S—r
<
I
>
™
|
=
—
—~~

(126) { (un,v0)® = B Y0y (wn (o 95)svn (5 43)) 22(0,0)
un (@i, ), Vn(Tis ) L2(0,1)
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Uy,i,j4+1
Ui—1,5+1 Ui,j+1 Uit1,j+1
uwai_lvj uzai+11j
Ui—1,j Ui, j Uit1,j5
h
Uy,i,j—1
Ui—1,5—1 Uj,5—1 Ui41,5—1

Figure 2: Stephenson’s scheme for A*u = f: The finite difference operator Aju; ; at point (i,j) is

Alu;; = A*Q(z;,y;) where Q(z,y) € P35 <[xi_1,xz~+1] x [yj_l,yj_l,_l]) is defined by the 13 collocated

values on the picture.
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The link between the grid scalar product (u,v), on L,%’O and the two scalar products (up,vn)®, (up,vn)?
is given by (see (84)),

h2

(127) (u,v)p = (up,vs)* + g(uh,xavh,w)z;
h2

(128) (u,v)n = (un,vn)? + F(uh,yavh,y)y-

As in the 1-D case, see (33), we introduce here a space S consisting of triples (u,us,u,) € L%,o: where
Ug, Uy are related to u by (112). For brevity, we shall sometimes refer to the triple simply by u € S. As
in the 1-D case, (see Lemma 3.4), we have the following result

Lemma 4.3 Letu € S. Let pp,qp € Qi,o correspond to u,, uy respectively. Then they are the projections
of Up,z, Un,y in the following sense

(129) (r, 1) = (Uh,esVR)" 5 (GhsVR)Y = (Uny,vh)Y , Yo € QLo
Proof: For each 1 < jo < N — 1, it results form (87) that

N-1

h Z (ph(-7 yj)7 Uh(': yj))Lz(O,l)

=1
N-1

b (whe(05), 08 (- 95))120,1)

=1

= (uh,zavh)m-

(Ph,vn)®

Therefore, the function py € Qé,o matching u, € Li,o is the unique solution of

(130) (Pr,vn)* = (Un,z,vn)® , Yop € Qi,o-

The proof is the same for up_y. |
We summarize in the following proposition the basic properties of the discrete operator A2. As in the
1-D case, that operator gives rise to a positive definite bilinear form.

Proposition 4.1 (i) Let (u,uz,uy), (v,v5,vy) € S, and let (un,ph,qn), (Vn,Th,21) be their matches
respectively in Qi,o- Then, the discrete biharmonic operator A3 defined by

(131) A%U@j = 6;1’Ll/i,j + (53ui,j + 255631“,,- , 1<i,j<N-1
induces a scalar product < u,v >p= (A%u,v), on S x S defined by

. 12 12
(132) < u,v>p= (Aju,v)n = ﬁ(uh,z — Ph,Vhz — Th)" + ﬁ(uh,y — qh;Vh,y — 2h)Y + 2(Uh oy, Vh,zy)-
In particular, the discrete operator A% is symmetric-positive definite on S.
(i) In terms of the basic finite difference operators, the product < u,v >p is given by

(133) (Abu,0)n = (8 uz, 65 va)n + (8 uy, 6 vy)n + 2(6F 65 u, 656, v)n
12 1 1
+ <6ju = 5 (e + Uz it15), 6fv - 5 (Vs + Uw,i+1,j)> )

1 1
t 12 (537“ = 5y +uyig), Sy v — 5oy + Uy,i,j+1)) :
h
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(iii) We have the two following coercivity properties of the norm < u,u >p= (AZu,u)p

(134) <u,u>p> C||0Fuoly + 16, uylh + 103 uy [} + 16, wslf |,
and
(135) <uyu>y?> C'luln,

where C, C" are constants independent of h.

Proof: (i) By (131), we have

(136) (A2u,v), = (83u,v)n + (6;11., v)p +2 (6§6Zu,v)h .
(I) (I1) (II1)

~~

IT), (I1I). For the term (I), we have

(tmetw),

= Z{ (uhe (- 95) = Phy Vn,a (- yj)_Th('ayj)}

J=

We consider separately each term (I),

(éiu, v)p = h

Mz

.
I

12
= ﬁ(uh,z — PhyVhe —Th)"-
In the same way
4 12 y
(137) (8yu,v)n = 2 — (Wh,y — qn,Vn,y — 21)".
For (III), we just note that
(138) (0202w, 0)p = (616, u, 610 u)n = (U 2y, Vhzy)-

Consider now the positive-definiteness of (132). Suppose that (A7u,u) = 0, then py(.,y;) is constant,
continuous and is zero at the end points, therefore p, = 0. The same result holds for g5 and u,. We

conclude that < u,u >1/2 (A2u, u)i/ is a norm in S.
(ii) Translating (132) in term of finite difference operators, we obtain (133), as in (90).
(iii) It results from (133) that

(139) (AZu,u)n > |5 usl} + 107wy} + 21655 ul?.

For the mixed term &6, u, we will show next that
1
(140) |03 05 uln > 6|5juy|h-

Indeed
Oy Uit = Oy i
: .
Using & u;j = 0yui; + %62u; j and the definition of Py, (see (113)), we deduce

(141) 6F o us; =

+5+,,. .
(5w(5yuw

Oytivij — Oytij 11 2
e Jh Y294 = [5 Uit1,j — 6yui7j

1 h 1
= 7 [uy,i+1,j — uy,z’,]’] + = [(52uy,i+1,j — ‘55“%1] + B [(SZQIUH‘LJ — Jf,ui,j]

= 5juy7,-,j + 6 6351 Uy i, + — h62(5+uz,j-
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In addition, using the definition of 5; we have

4
(142) 16263 uy| < 5163wy
and

2
(143) 8205 uln < 2167 63 uln.

Therefore, we have

h? h
|03 0y uln > 107 uyln = g|5§5iuy|h - 51050  uln
2
> |03 uyln = g|5iuy|h — 1638, uln,

which gives finally 2|6} 0, uln > [0 uy|n or equivalently (140). We proceed in the same way in proving
the symmetric estimate

1
(144) |03 6, uln > 6|6gj_uz|h
Finally, the last coercivity inequality (135) is obtained starting from
(145) |63 ulh = (Jun,q|")?,

and following the same lines as in the proof of (100) in Lemma 3.5. |
We conclude this section with the following error estimate

Proposition 4.2 Let U be the Q% o Lagrange interpolation of the exact solution u(x) of (109) and @ the
discrete solution of (110), then there exists a constant C independent of h such that

Proof
The proof follows the same lines as the one of Proposition 3.1. We use in particular the inequality (135).
[ |

5 A Stephenson based compact scheme for the streamfunction
formulation of the Navier-Stokes equations

The pure streamfunction form of the Navier-Stokes equation is
(147) O Aty = —=V1ih - V(AY) + vAZy).

The streamfunction was introduced already by Lagrange, see ([14, Ch. IV]). For simplicity, we deal only
with the “no-slip” boundary condition, namely, the velocity vanishes on the boundary. This implies that
we seek the streamfunction ¢ € Hio (see [2] for a full discussion of the functional space for ). The

notation is as follows. We denote by t; ; € L}, ; a grid function and ¢, ; j,%y.:,; € Lj, o the Stephenson
gradient defined by

where the interpolation operators P, P, are (see (113)),
1 2 1 1 2 1
(149) Py = 6¢i—1,j + §¢i,j + 6¢i+1,j 5 Py = 6¢i,j—1 + 3%‘,]’ + 6¢i,j+1a
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The discrete gradient V1 is defined as the pair of the discrete functions (¢, ,) and the discrete velocity
is defined as the discrete curl of the streamfunction in the sense

(150) Vh ¢Z)J - a] - [Ui,j, ’Uiaj] = [ - ¢y’iaj7 ¢wai’jj| °
The discrete Laplacian is defined by the standard 5 points formula
(151) Antpij = 63015 + Gytij-

The discrete Stephenson biharmonic A? introduced in (110) is
(152) A%Ui,j = (5;1u,-,j + 5;11”’]' + 2525;111',]' , 1<4,j<N-1

A? is a 9 points operator acting at every point (i, j) interior to the domain. The semi-discrete scheme
associated with (147) consists in finding 9 (t) € L,ZL’O which satisfies the evolution equation

(153) AR = —Vitp - (ARVit)) + vA2e,
with initial condition
(154) 1,5 (0) = (40) (i, y;)-

Note that in (153) and in what follows we use pointwise multiplication of functions in L%,o’ ie., (u-v); =

u; jv; ;. We denote by e(t) = P(t) —(t) the difference between the computed and exact solutions. The
exact solution verifies

(155) O ARy = —Vith - [ApVa(@)] +vALY + F

where F is the truncation error of the scheme depending on the regularity of the exact solution. We call
U and U the discrete velocities associated to 1, 1 by

(156) U= (=thy,%s) , U= (=ty,9s).

Recall that in (156), the z and y subscripts stand for the discrete derivatives defined in (148). In
particular, ¥, 1, are not the values of the exact derivatives of 4. The error e(t) evolves according to

(157) dhe — vA%e = —[U - Ay (4, Yy) — U - Ay (¢, )] — F

The right hand side in (157) is decomposed in 4 terms

(ﬁ-Ah(«Zx,Jy)—U-Ah(«ﬁx,«/}y)]+F = U) - Ap[(% = 9)as () — )]
+ Ah[wz)'(py]
+ U-Ah[(w—w)x,(w—w)y]w

Taking the h scalar product with e(t), we obtain

(158) (BAe —vA%ee), = — ((17 —U) - A% = 9)as (B — 1)), e)
- ((ﬁ_U)'Ah(/(pz:wy)ae)h

- (U-Ah [(J—w)w,i—w)y},e)
— (Fle)

h

h

IE
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We denote the four terms of the r.h.s. by Ji, Jo, J3, Jy

U=U)- A0 =)o, (@ =)y, €),

J1
Jo

J3
J4

U -
F

7

Ah(¢ - w)zaibv_ ¢)yae)h

€)h-

(¢
(T —U) - An(a, ), €)
(
(

We estimate separately the four terms Jy, Jz, J3, Js-

1- TERM J;:
The term Jj is

(159)

We have

(160) T-U=

Ji =

[_

(((7 - U) : Ah(ez‘:ey)ae)h'

W =)y, (W =)o | = (—ey, €a),

where the subscripts  and y are the Stephenson derivation operators. Therefore

Ji = (((7 -U) -Ah(ez,ey),e)

h

( — ey(éiem + ézez) —+ ez(Jﬁey + 5Zey), e)h

(—ey(d2e, + Jzez), e)h + (ex(62ey + 6§ey), e)
—(02es, eey)h - (5Zez, eey)h + (82ey, eez)h +
(03 exs ‘5:(6611));1 + (5;%’ 6;(6611))
(5jey,5j(ee$))h - ((5;'63,,5;'(6%))

h

b

h
(6§ey, eem)h

In order to formulate a discrete Leibniz rule for w,z € Lj ; we use the ”shift operators” (Syw)i; =
Wit1,5,(Sy2)i,j = Zi,j+1- In terms of these operators we have

(161)

8 (wz) = (Spw)i ;04 2z + 287w

which is quite easy to verify. Using (161), we expand J; in the sum of 8 terms

i

(5;6:0:(5 ey) ,J5+ )
(5;6@ (Syey)i,j dy e)h ((5;_693, eégey
(5;%5(5 €x)i,j :—ci_e)
(6, ey, (Syez)i ;0 e)

+ (0Feq,ed5ey),

h

)
(5;_63/’ e(ﬂ'ew) h
)

+ +
— (6 ey, ed; e, .

There is a cancellation of terms 2 and 6 on one hand, 4 and 8 on the other hand, so that

(162)  Ji = (6} e, (Suey)die), +

((5;61, (Syey)dz'e)h + (07 ey, (Szez)éje)h + ((5;6?}, (Syew)dje)h.

We now observe that if § € Lj ,, then [0]oon < +10|n. We can therefore estimate J; as follows

|Ji| = K(ﬁ -U) -Ah(ez,ey),e)

h

IA

IA

eIt eals + 105 a2 + 153 e, 2 + |6;ey|%] n

eIt eals + 155 eal2 + 153 e, 2 + |6;ey|i]

1
| carention (15zelz +155elt)
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where in the last step we have used (51) to estimate |ez|oo,n < C|0} €|oo,n and |ey|oo,n < C|5;je|oo,h with
a constant independent of h. The factor £ > 0 will be specified later.

2- Term Js:

The term J> is estimated by

(163) [l = (@ = U) - Aulha, )€, | < 5CLIT = U +[ef3):

We have used that Ap(1,,1,) is the discrete operator Aj composed by the Stephenson gradient applied
to the exact solution, and is bounded if the exact solution is sufficiently regular. In addition, using that

ﬁ_U = [_ ("Zy _d)y)a&z _d)w]a we have

(164) U = Uls = lesli + leyli-

In addition, we have, in view of (60), (78),

(165) lezln < Clofeln 5 leyln < Cloy eln,

and, due to the Poincaré inequality (21) we deduce

1
(166) 17l < 50|63l + 65l
3- TERM Js:
We have
(167) J3 = [U . Ah(ez,ey),e] =£u5iez,e);3+ (ubles, e)n + (V5ey, €)n + (V8 ey, €)n -
h -~ N - " ~ ~~ 4 N - >
J3,1 J3,2 J3,8 J3,4
We have
(168) Ja1 = (ubles,e)n = (02, ue)p = — [6m+ew,6j(ue)] .
h
Using (161), the term J3; is estimated by
ol = |[6F eas 63 )], < [6Fealnldd el
< 5ol |[(Sru)ssteln + eaFul
<

35 exln [l 5l + 160l alel
Therefore, using the Poincaré inequality (21), the term Js; is estimated by

|J3,1]

IA

1
o Juos 55l [el55ea 2 + (57l + el

IA

C
(o 650l ) {1052+ £ (05l + 552
Using the same principle in the y direction, we obtain for the term J3 5

C
169) Vol = |08 €] < max(fulo o 65 ul ) |elieclt + (155 + 15512
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Therefore, the estimate for the term J3 1 + J32 is
(170)

[ c
s Taal < aal+na] < ma | uloo s 1650l 5 ul | | o] 55ea 165 el p+ S { I3l 57l
Treating the term Js 3 + Js3 4 in the same way, we obtain
(171)
[ c .
gt Jaal < gl 1ol < x|l 8ol 55 1o 005 €, 2105 1+ S (63l 4185l

The estimate for the term J3 is finally with M (u) = max [|u|oo, V005 [0 o0, [0 %0 |0 V] o, |5;'v|oo] ,

2C
D)Vl < M) [e{lofealt + 05 alh + oFesl + 165l b+ 2 {lorelh + 55l

4- TERM Jg:

The term Jy is the truncation error and is of order 3/2 (in the | - |, norm) in view of Lemmas 3.1 and
4.2. For any time the term Jy is the truncation term and is of order 3/2. For any time T > 0, the term
Jy is estimated by

(173) sl < C(T)|elnh®? < O(T)[|6Felh + |85 el + 1*],

where C(T) is a constant depending only of T' > 0 and of the regularity of the exact solution ¥ (t) on
[0,T]. We use now the following weak stability property of the Stephenson biharmonic (134) derived in
section (4), which is

(174) (A%u:“)h >C |5;_“w|i + ‘5;—”11'}21 + I5Zuylﬁ + |51j_u$|)’21 .

Turning back to (158), we have, on [0, Tp],

0 1d
(aAheae)h —v(Aje,e)n = —§£{|éjeli + |5;e|%} —v(Ahe,e)n
= —Ji—Je—Jd3—Jy,
or
]. d + 12 + 12 2
5%“62 el +{loyelr} = Ji+Ja+ T3+ Ju—v(Age,e)

< il + || + [ Js| + | Ja| = v(ARe, e)n

< |+ [l + | Js| + | sl = Cv[|of ealh + 6] ey |7 + 103 eyl7 + 105 €al]-
Collecting the terms of the form

(175) |05 ez lh + 105 eylh + 107 ey[i + 16, eali

which appear in the estimates for Jy, Ja, J3, Jy and selecting € > 0 sufficiently small, these terms are
absorbed in the RHS of the last inequality. We are therefore left with the estimate

d 1
aro) g {iare: iage: b <ciozels + igeld] |1+ g arel: + agen] + n

where C, C" depend on the exact solution 1 and on the viscosity coefficient v but not on h.

In order to prove convergence of the approximate solution 1 to the exact solution 1 using (176), we
proceed as follows. We use the fact that at ¢ = 0 the error e = 0 in order to prove an estimate for
|03 eln + 10, e|n up to any given time T > 0.
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Theorem 5.1 Let T > 0. Then there exist constants C, hg > 0, depending possibly on T, v and the exact
solution v, such that, for all 0 <t < T,

(177) 0% elr + |6 el <CB® , 0<h<ho

Using Corollary 2.1, we obtain a 3/2 convergence rate in the discrete L? norm.

Proof:

Fix some K > 0. Observe that at t = 0 we have e = 0, hence also §fe = §fe = 0 (at t = 0). Thus,
taking h > 0, there exists a time 7 > 0 (in general depending on h) such that

(178) sup {|5;re|h + |6je|h} < Kh.
0<t<

Inserting (178) in (176) we have for t < 7

(179)

d

o |6Fels + |6je|§] <C(1+ K?) [|éje|%; + |6;je|i] +C'h® , 0<h<hg

hence by Gronwall’s inequality (179) gives

(180) |6Fe|2 + |67 €2 < CreCU+EDE <y

with a suitable constant C; > 0. Observe that in (180) 7 depends on h, and define 79 = 79(h) by
(181) 7o = sup{t > 0 such that |6 e|n + |6, e|n < Kh}.

We have 19 > 7 and, as in (180), we obtain

(182) |6Fe|2 + (67 e2 < CreCO+RIES | 4 < g,

We can now select hg so small that

(183) CeCOHEN T <« K.

Now the definition of 79 and (182-183) implies that, for any 0 < h < hg we have 19(h) > T and, in
particular, for such h, the estimate (180) holds true for all ¢ < T. This concludes the proof of the
theorem. [
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