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Abstract

We introduce a new box-scheme, called “hermitian box-scheme” on
the model of the one-dimensional Poisson problem. The scheme com-
bines features of the box-scheme of Keller, [20], [13] with the hermitian
approximation of the gradient on a compact stencil, which is charac-
teristic of compact schemes, [9, 21]. The resulting scheme is proved to
be 4th order accurate for the primitive unknown u and its gradient p.
The proved convergence rate is 1.5 for (u, p) in the discrete L2 norm.
The connection with a non standard mixed finite element method is
given. Finally, numerical results are displayed on pertinent 1D ellip-
tic problems with high contrasts in the ellipticity, showing in practice
convergence rates ranging from 1 to 2.5 in the discrete H1 norm.
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1 Introduction

The purpose of this paper is to introduce a hermitian box-scheme for el-
liptic problems in conservative form, with interesting accuracy properties,
especially for the gradient of the solution.

The scheme we present is apparently new. It is defined on a regular
finite difference grid, but its design applies also to a non equispaced grid.
The design borrows ingredients to:
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CEA, EDF, BRGM and CNRS): Modélisation pour le stockage des déchets radioactifs.
The author thanks especially A. Bourgeat for his encouragements and his interest in this
work.
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• The box-scheme of Keller [20], in the setting of [13].

• The hermitian interpolation of the gradient, which is introduced in
Collatz, [9]. That kind of interpolation is the basis of the so-called
compact schemes, [21], [15].

• The Stephenson scheme for the biharmonic problem, introduced in
[28], which has been recently used for the numerical simulation of the
incompressible time-dependent Navier-Stokes equations, [4], [3].

Briefly, we consider as in most of the methods for elliptic problems, a
scheme in mixed form, but we consider the mixed form on the “box” a lenght
2h, Kj = [xj−1, xj+1]. As in [13], we take the average of the conservation
law and of the constitutive law. Therefore, the resulting scheme has a finite-
volume design, but with overlapping volumes. A difference with methods
like the mixed finite element method, [27], the control volume method, [8],
or so-called box-methods, [17, 19], is that our box-scheme is not parameter
free. As in [12, 14, 16], we have to adjust locally in each box the accuracy of
the quadrature rule for the gradient. The main properties of the hermitian
box-scheme are:

• Fourth order accuracy for p = u′(x) and u(x) on regular problems at
interior points, with a convergence rate of 1.5 for regular problems. We
observe even in many cases a superconvergence rate for the gradient.

• A very good capability to handle sharp contrasts in the diffusion co-
efficients. We observe a practical convergence rate in the H1 norm
ranging from 1 to 2.5, for 1D problems with contrasts up to 104 in the
ellipticity.

• A great flexibility in the design, permitted by the variation of the
quadrature rule for the gradient.

The outline of the paper is as follows. After the notation in Section 2, we
describe in Section 3 the design principles of the scheme on the 1D Poisson
problem. In Section 4, we precise the connection with a non standard finite
element method and give some error estimates. The scheme appears to be
4rd order in u and p. In Section 5, we focus on numerical tests in 1D. First we
observe a remarkable superconvergence of the gradient for regular solutions.
The scheme behaves very well, even on coarse grids, with very good error
levels. Then, we apply the hermitian-box scheme to several numerical tests
for problems with high contrasts in the diffusion coefficients, originating
from the test suite in [24]. That kind of problems is still of high interest in
the porous media community, where the accurate computation of the fluid
velocity flows in fractured and layered soils is an important question. In
addition the numerical analysis of methods for such problems has recently
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been adressed in [24], [2], [29].
Finally, let us insist on the fact that the design of the present scheme is
connected with the compact scheme collocation methodology [9], [21], [28].
See also [6] for another collocation scheme. The numerical analysis is also
tractable using the formalism of the mixed finite element method, [1, 7, 23,
5, 12].

2 Finite differences and finite elements notation

We consider for f ∈ L2[0, 1] the linear 1D elliptic problem in [0, 1]

{
−(k(x)ux)x = f(x) , 0 < x < 1
u (0) = 0, u (1) = 0,

(1)

where k(x) > 0 is a piecewise continuous ellipticity function on [0, 1]. This
problem is well-posed in H1

0 (]0, 1[), which means in particular that u(x)
is continuous and that ux(x) ∈ L2(0, 1). In addition, any solution of the
homogeneous equation

−(k(x)ux)x = 0 , 0 < x < 1. (2)

verifies the maximum principle, that is, it attains its extremal values in α
or β, see for example [26]. We consider the discretisation of (1) on a regular
finite difference grid x1 = 0 < x2 < ... < xN−1 < xN = 1 with grid-size h.
We denote by l2h the space of sequences uj , 1 ≤ j ≤ N and l2h,0 the subspace
of sequences with u1 = uN = 0. We note the scalar product and the norm
on l2h

(u, v)h = h
N∑

j=1

ujvj , |u|2h = h
N∑

j=1

u2
j . (3)

We denote also the equivalent scalar product and norm on l2h defined by

(u, v)h′ =
h

2
u1v1 + h

N−1∑

j=2

ujvj +
h

2
uNvN , |u|2h′ =

h

2
u2

1 + h

N−1∑

j=2

u2
j +

h

2
u2

N .

(4)
The relation (4) corresponds to the trapezoidal quadrature rule on the in-
terval I = [0, 1], [18]. The grid function ϕi ∈ l2h is the canonical basis of l2

defined by ϕi
j = δi,j (Kronecker symbol).

We denote as usual the operators δ2
x, δx, δ±x ,





δ2
xuj =

uj+1 + uj−1 − 2uj

h2
; δxuj =

uj+1 − uj−1

2h
, 2 ≤ j ≤ N − 1

δ+
x uj =

uj+1 − uj

h
, 1 ≤ j ≤ N − 1 ; δ−x uj =

uj − uj−1

h
, 2 ≤ j ≤ N.

(5)
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We extend each definition in (5) to a boundary point j0 = 1 or N , when
needed, by δ2

xuj0 = δxuj0 = δ±x uj0 = 0.
The discrete integration by parts formulas are, for all u, v ∈ l2h,0

• (δ2
xu, v)h = −(δ−x u, δ−x v)h = −(δ+

x u, δ+
x v)h,

• (δ+
x u, v)h = −(u, δ−x , v)h.

(6)

We introduce also for all u ∈ l2h, the following operator

δ̃xuj =





δ+
x u1 , j = 1,

δxuj , 2 ≤ j ≤ N − 1,
δ−x uN , j = N.

(7)

Finally |δ+
x u|h and |δ̃xu|h′ are norms on l2h,0 and we have the following dis-

crete Poincaré inequalities.

Lemma 2.1 (Discrete Poincaré inequalities) (i) For all u ∈ l2h,0, we
have

|u|h ≤ 2|δ+
x u|h, (8)

(ii) For all u ∈ l2h,0, we have

|u|h ≤ 4|δ̃xu|h′ . (9)

Proof: (i) see e.g. [3].
(ii) Suppose u ∈ l2h,0. It is easy to verify that (consider separately the cases
i0 odd and i0 even) that

u2
i0 ≤ 4|δ̃xu|h′ |u|h, i0 = 1, ..,N. (10)

Since h = 1
N−1 , we have for all u ∈ l2h,0

|u|2h =
N−1∑

i=2

hu2
i ≤ 4

N − 2

N − 1
|δ̃xu|h′ |u|h. (11)

which gives (9). �

To each grid functions u ∈ l2h,0, p ∈ l2h, we match their corresponding piece-
wise linear finite element functions called uh(x), ph(x), defined by

uh(x) =

N−1∑

j=2

ujϕ
j
h(x) , ph(x) =

N∑

j=1

pjϕ
j
h(x). (12)

In particular, ϕj
h(x) is the “hat” function associated to point xj, matched

to the grid function ϕj . A grid function in l2h,0 corresponds to a finite

element function in the space P 1
c,0 = Span(ϕ2, ..., ϕN−1). For uh ∈ P 1

c ,
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ūh ∈ P 0 is the piecewise constant function defined in [xj, xj+1] by uj+1/2 =
(uj +uj+1)/2. A grid function in l2h corresponds to a finite element function
in P 1

c = Span(ϕ1, ..., ϕN ). Finally, we denote the L2 scalar product in [0, 1]
by (f, g), the L2 norm by |f |, and the L∞ norm by |f |∞.
We begin by the following lemma, [3].

Lemma 2.2 The following identities hold
(i) For all u, v ∈ l2h,

(u, v)h′ = (uh, vh) +
h2

6
(uh,x, vh,x) = (ūh, v̄h) +

h2

4
(uh,x, vh,x). (13)

In particular, if u ∈ l2h,0 or v ∈ l2h,0, the left hand side of (13) is (u, v)h.

(ii) For all u, v ∈ l2h,

(δ̃xu, v)h′ = (uh,x, vh) = −(u, δ̃xv)h′ + uNvN − u1v1. (14)

In particular, if u ∈ l2h,0 or v ∈ l2h,0,

(δ̃xu, v)h′ = (uh,x, vh) = −(uh, vh,x) = −(u, δ̃xv)h′ . (15)

(iii) For all u, v ∈ l2h,0, we have

(δ2
xu, v)h = −(uh,x, vh,x). (16)

(iv) For all p ∈ l2h, with ph ∈ P 1
c the matching finite element function, we

have

|ph,x| ≤
2

h
|p|h′ . (17)

Proof:
The proofs are elementary computations resulting from the fact that uh is
piecewise linear and uh,x piecewise constant in each cells Kj+1/2 = [xj , xj+1].

�

In the sequel, we use the following notation

• u(x) is the exact solution of (19) and p(x) = u′(x) is its derivative (the
flux).

• ũ ∈ l2h,0, p̃ ∈ l2h are the grid functions defined by the interpolated values

ũj = u(xj) , p̃j = p(xj) , 1 ≤ j ≤ N. (18)

We note also ũh ∈ P 1
c,0, p̃h ∈ P 1

c the matched finite elements functions
respectively to ũ, p̃.

• u ∈ l2h,0, p ∈ l2h are the discrete solutions of the hermitian box-scheme,
see Section 3.
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Figure 1: The stencil of the hermitian box-scheme: Kj = [xj−1, xj+1]

3 A hermitian box-scheme for the 1-D elliptic prob-

lem

3.1 Definition of the scheme

We introduce here the general principle of the hermitian box-scheme on the
simple model of the one-dimensional Poisson problem:

{
−uxx (x) = f(x) , 0 < x < 1 , (a)
u (0) = 0 , u (1) = 0 (b).

(19)

As in the case of the standard box-scheme, the design of the hermitian box-
scheme for (19) is in two steps, [20, 10, 11, 12, 13]. First, (19) is recasted in
mixed form 




px + f = 0 (a)
p − ux = 0 (b)
u (0) = u (1) = 0 (c).

(20)

We consider now “boxes” constitued of the cells Kj = [xj−1, xj+1], see
Fig 3.1. In contrast with [13], the boxes Kj , Kj+1 overlap, Kj ∩ Kj+1 =
[xj , xj+1]. Suppose that u(x) is an exact C1 solution of (19) and p(x) :=
u′(x) is its gradient. We take the average of (20a) and (20b) on the boxes
Kj , for all 2 ≤ j ≤ N − 1 which gives that the exact solution (u, p = ux)
verifies the 2(N − 1) equations





p (xj+1) − p (xj−1) = −2h (Π0 f)|j , 2 ≤ j ≤ N − 1 (a)

2h (Π0 p)|j − [u (xj+1) − u (xj−1)] = 0 , 2 ≤ j ≤ N − 1 (b)

u (x1) = u (xN ) = 0 (c).

(21)

In (21), Π0 stands for the average operator on the box Kj = [xj−1, xj+1],
that is, for any function g(x),

(Π0g)j =
1

2h

∫ xj+1

xj−1

g(x)dx. (22)
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Furthermore, in order to have a set of 2N equations corresponding to the
2N values (u(xj), p(xj)), we have to consider some definition of the values
of p(x1), p(xN ). Suppose we complete the system (21) by the two equations
giving the derivatives p1 = u′(0), pN = u′(1) as functions of f(x). Then, the
exact solution u of the continuous problem (19), and its gradient p satify
the following system of equations





p (xj+1) − p (xj−1) = −2h (Π0 f)|j (a)

2h (Π0 p)|j − [u (xj+1) − u (xj−1)] = 0 (b)

u (x1) = u (xN ) = 0 (c)
p(0) = u′(0) (d)
p(1) = u′(1) (e).

(23)

In the case of problem (19), the exact solution is explicitely given in
function of f(x) by

u(x) = x

∫ 1

0
(1−s)f(s)ds−

∫ x

0
(x−s)f(s)ds , p(x) =

∫ 1

x
f(s)ds−

∫ 1

0
sf(s)ds,

(24)
so that p(0) = u′(0) and p(1) = u′(1), are





p(0) =

∫ 1

0
(1 − s)f(s)ds

p(1) = −
∫ 1

0
sf(s)ds.

(25)

We now deduce from (23) a finite difference scheme in (uj , pj) with uj ≃
ũj, pj ≃ p̃j , by specifying the two following approximations

• Approximation of the average of the flux Π0pj .

• Approximation of the boundary operator f 7→ (ux(0), ux(1)).

Suppose that 2 ≤ j ≤ N . The average of the flux on Kj = [xj−1, xj+1] is

Π0pj =
1

2h

∫ xj+1

xj−1

p(t)dt. (26)

We approximate Π0pj by the Simpson formula

PSpj =
1

6
pj−1 +

2

3
pj +

1

6
pj+1 ≃ Π0pj. (27)

Note that the relation (27), which is characteristic of the cubic splines inter-
polation, see [25], [18], is also used to define the gradient in the Stephenson
scheme for the biharmonic problem, [28], [4], [3]. Recall that the error rep-
resentation of Simpson formula is given by the Peano Kernel Theorem, [18].

Π0pj − PSpj =
1

2h

∫ h

−h
KS(σ)p(4)(xj + σ)dσ, (28)
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where KS(t) is the negative function defined for |t| ≤ h by

KS(t) = − 1

72
(h − |t|)3(h + 3|t|). (29)

Note that in (28), we can replace p(4) by −f (3). Suppose we extend the
function u(x) by imparity on [−h, 0], so that the function p(x) is extended
by parity. If the function p(x) defined in that way is C4 on [−h, h], which
is equivalent to the fact that p′(0) = p′′′(0) = 0, then formula (28) holds for
j = 1 on [−h, h]. Since the kernel KS(σ) satifies KS(σ) = KS(−σ), where
the Simpson operator PS is extended at j = 1 by

PSp1 =
2

3
p1 +

1

3
p2 ≃ 1

h

∫ x2

x1

p(t)dt. (30)

Similarly, PSpN is defined at xN = 1 by

PSpN =
2

3
pN +

1

3
pN−1 ≃ 1

h

∫ xN

xN−1

p(t)dt. (31)

In general however, we do not have that p is C4 on [−h, h], so that we
only have at x1 = 0 the simple formula, also obtained by the Kernel Peano
Theorem

∫ x2

x1

p(t)dt = h(
2

3
p1 +

1

3
p2) +

∫ h

0
(
2

3
h − σ)p′(x1 + σ)dσ, (32)

and at xN = 1,

∫ xN

xN−1

p(t)dt = h(
2

3
pN +

1

3
pN−1) −

∫ 0

−h
(
2

3
h + σ)p′(xN + σ)dσ. (33)

We denote by kS ∈ l2h the grid function defined for the exact solution
p(x) by

kS
j =





(Π0p)j − PSpj =
1

2h

∫ h

−h
KS(σ)p(4)(xj + σ)dσ , 2 ≤ j ≤ N − 1,

1

h

∫ x2

x1

p(t)dt − (PSp)1 =
1

h

∫ h

0
(
2

3
h − σ)p′(xj + σ)dσ , j = 1,

1

h

∫ xN

xN−1

p(t)dt − PSpN = −1

h

∫ 0

−h
(
2

3
h + σ)p′(xj + σ)dσ , j = N.

(34)
We deduce from (34)

|kS
j | ≤

1

180
h4|p(4)|∞,[0,1] , |kS

1 | ≤
5

18
h|p′|∞,[0,h] , |kS

N | ≤ 5

18
h|p′|∞,[1−h,1].

(35)
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Now, the exact grid solution ũj , p̃j verifies at interior points 2 ≤ j ≤ N − 1,

δxũj = Π0pj =
1

2h

∫ xj+1

xj−1

p(x)dx = PS p̃j + kS
j . (36)

At point x1 = 0, we have

δ+
x ũ1 =

1

h

∫ x2

x1

p(x)dx =
1

3
p̃1 +

2

3
p̃2 + kS

1 = PS p̃1 + kS
1 , (37)

and at point xN = 1,

δ−x ũN =
1

h

∫ xN

xN−1

p(x)dx =
1

3
p̃N−1 +

2

3
p̃N + kS

N = PS p̃N + kS
N . (38)

We deduce from (36, 37, 38) that

PS p̃j = δ̃xũj − kS
j , 1 ≤ j ≤ N. (39)

The Hermitian Box Scheme (referred in the sequel as HB scheme) for the
Poisson problem (20) reads now: Find U = [u1, u2, ...uN−1, uN ] ∈ l2h, P =
[p1, p2, ...pN−1, pN ] ∈ l2h solution of





−pj+1 − pj−1

2h
= Π0fj , 2 ≤ j ≤ N − 1 (a)

1

6
pj−1 +

2

3
pj +

1

6
pj+1 = δxuj , 2 ≤ j ≤ N − 1 (b)

u1 = uN = 0 , (Dirichlet conditions) (c)
1

3
p2 +

2

3
p1 =

1

h
(u2 − u1) (d)

1

3
pN−1 +

2

3
pN =

1

h
(uN − uN−1) (e).

(40)

Observe that (40)(b),(d),(e) can be rewritten as

PSp = δ̃xu, (41)

Finally the HB scheme rewrites: find (u, p) ∈ l2h,0 × l2h solution of

HB scheme

{ −δxpj = Π0fj , 2 ≤ j ≤ N − 1 (a′)

(PSp)j = δ̃xuj , 1 ≤ j ≤ N (b′).
(42)

Lemma 3.1 (i) The relation (42)b′ is 4th order in the finite difference sense
at the interior points 2 ≤ j ≤ N − 1. (Note that the relation (42)a′ is exact
for all j = 2, .., N − 1).
(ii) The application u ∈ l2h,0 7→ |p|h′ with p ∈ l2h defined by (42)b′ defines a

norm on l2h,0 and there exist constants C1, C2 such that

C1|δ̃xu|h′ ≤ |p|h′ ≤ C2|δ̃xu|h′ . (43)
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Proof: (i) has been proved in (35).
(ii): The grid function p ∈ l2h is defined from u ∈ l2h,0 by

PSp = δ̃xu. (44)

The Simpson operator PS in (44) can be written

PS = I + B, (45)

where B is defined by

Bpj =





h

3
δ+
x p1 , j = 1

h2

6
δ2
xpj , 2 ≤ j ≤ N − 1

−h

3
δ−x pN , j = N.

(46)

We have clearly ‖B‖∞ ≤ 2/3, therefore

‖B‖h′ = sup
q∈l2

h
,q 6=0

|Bq|h′

|q|h′

≤ 2

3
. (47)

The inverse of PS is given in L(l2,h) by the Neumann series

P−1
S =

+∞∑

n=0

(−1)n−1Bn, (48)

which gives

‖P−1
S ‖h′ ≤

∑

n≥0

(2

3

)n
= 3, (49)

and
p = P−1

S δ̃xu. (50)

Therefore we have

1

‖PS‖h′

|δ̃xu|h′ ≤ |p|h′ ≤ ‖P−1
S ‖h′ |δ̃xu|h′ , (51)

which gives (43). �

At this point, one may wonder if the grid gradient ux cannot be elim-
inated in a simple way and if the scheme (42) is not an already known
scheme.
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Lemma 3.2 The HB scheme (42) is equivalent to the scheme

−
[
(δx ◦ P−1

S ◦ δ̃x)u

]

j

= (Π0f)j , 2 ≤ j ≤ N − 1. (52)

completed with the implicit recovery of the gradient (50). The scheme (52)
is 4th order in u. In addition, for j = 2, ...,N − 1, relation (52) rewrites

−uj+2 + uj−2 − 2uj

4h2
=

1

6
Π0fj−1 +

2

3
Π0fj +

1

6
Π0fj+1, (53)

with the convention that u0 = −u2, (Π0f)1 = 0, and uN+1 = −uN−1,
(Π0f)N = 0.

Proof: Using (50), we observe that the HB scheme (42) can be expressed
in u only by: find u ∈ l2h,0 solution of

−
[
(δx ◦ P−1

S ◦ δ̃x)u

]

j

= (Π0f)j , 2 ≤ j ≤ N − 1. (54)

This expression is not explicit, since we have to invert the Simpson matrix
PS . Once u ∈ l2h,0 is known, p ∈ l2h is recovered by (50). The symbol a(θ),
for all semi-discrete Fourier mode θ = hξ ∈ [0, 2π[, of the operator

uj 7→ Π0(u′′)j −
[
(δx ◦ P−1

S ◦ δ̃x)u

]

j

(55)

is

a(θ) = −ξ6 h4

180
+ O(h6), (56)

which proves that (53) is actually 4th order in u (in the periodic setting).
Observe now that at any interior point j, 2 ≤ j ≤ N − 1,





−δxpj = Π0fj , 2 ≤ j ≤ N − 1 (a)

(I +
h2

6
δ2
x)pj = δxuj , 2 ≤ j ≤ N − 1 (b).

(57)

Applying δx on each side of (57)b, we find, (note that δx ◦ δ2
x = δ2

x ◦ δx),

δx(I +
h2

6
δ2
x)pj = δx(δxu)j . (58)

Therefore

(I +
h2

6
δ2
x)δxpj = δx(δxu)j , (59)

and using (57)a, one obtains that uj is solution of the following scheme

−δx(δx)uj = (I +
h2

6
δ2
x)(Π0f)j , 3 ≤ j ≤ N − 2. (60)
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which is (53). Furthermore, the same computation is valid for j = 2,
j = N − 1, according to the extension by imparity of uj and f(x) at x = 0,
x = 1. �

Remark 1:
On can replace in (52) the integral of f(x) over Kj by any 4th order quadra-
ture formula, in order to preserve the 4th order accuracy. For example, if
the Simpson rule is used, we obtain for j = 3, ..,N − 3 the scheme

−uj+2 + uj−2 − 2uj

4h2
=

1

36
fj−2 +

2

9
fj−1 +

1

2
fj +

2

9
fj+1 +

1

36
fj+2. (61)

Remark 2:
Recall that a standard 4th order finite difference scheme is the MV1 scheme
of Collatz, [9], defined by

−uj+2 + uj−2 − 2uj

4h2
=

1

12
fj−2 +

5

6
fj +

1

12
fj+2. (62)

Observe that the MV scheme (62) and the HB scheme (53) differ only by
the interpolation operator applied to the source term. It appears that the
two schemes are different and both of order 4. The usual derivation of the
MV scheme, [9], is obtained by collocation for the unknown u alone. The
flux p is not involved. In addition, the MV scheme has to be supplied with
a lower order scheme at the 2 near boundary points. In the contrary, the
4th order approximation of the gradient is provided by the HB scheme in a
consistent way.
Remark 3:
The stability result obtained in (43), is due to the boundary condition on
p approximating the boundary operator. Note however, that this stability
result cannot a priori ensure the absence of oscillations. Actually, the form
(60) suggests a possible decoupling odd/even. Therefore, in the “far field”,
the scheme associated with the operator δx ◦ δx uses only odd (or even)
points, which could give oscillations.
Remark 4:
Note finally that the global conservativity in the scheme (42) is clear only
when there is an even number of cells [xj−1, xj ], i.e. an odd number of
points.

4 Numerical analysis

4.1 Error estimate

In this section, we show, how the finite element analogy of the finite differ-
ence setting can help to perform the numerical analysis.

1Mehrstellenverfahren

12



Let us begin by the finite element interpretation of the hermitian relation
connecting the grid gradient function p ∈ l2h of u ∈ l2h,0 with the gradient of

the finite element function uh(x) ∈ P 1
c,0 matching u.

Lemma 4.1 The hermitian relation (42)b′ is equivalent to the fact that ph

is the orthogonal L2 projection of uh,x on P 1
c , that is,

(ph − uh,x, qh) = 0 , ∀qh ∈ P 1
c . (63)

Proof:
The proof is straightforward considering separately the case qh ∈ P 1

c,0 which

corresponds to (40)b and qh = ϕ1
h, ϕN

h which corresponds to (40)b,d. Note
that the Simpson operator translates simply in the finite element language
as the mass matrix. �

Theorem 4.1 (i) There exists a unique solution (u, p) ∈ l2h,0 × l2h solution
of (40) satisfying

|u|h + |p|h′ ≤ C|f |L2[0,1]. (64)

(ii) The following error estimate between the grid interpolated values of the
exact solution ũj = u(xj), p̃j = p(xj), and the solution (u, p) of the scheme
(42) holds

|ũ − u|h + |p̃ − p|h′ ≤ C

[
h3/2|f |∞,[0,h]∪[1−h,1] + h4|f (3)|∞,[0,1]

]
. (65)

Proof: We use for the stability estimate (64) the finite element analogy,
and for (ii) a direct proof.
(i) We have that p ∈ l2h verifies

−δxpj = (Π0f)j 2 ≤ j ≤ N − 1. (66)

This is equivalent to the fact that for all v ∈ l2h,0,

(Π0f, v)h = −(δxp, v)h = −(δ̃xp, v)h′ = (p, δ̃xv)h′ = (ph, vh,x)

= (ph, vh,x − qh) + (ph, qh) = (ph, qh).

Taking qh = ph, and therefore v = u, we obtain

|ph|2 ≤ |Π0f |h|u|h. (67)

The left-hand side is bounded from above, by, (see (13), (17)),

|ph|2 ≥ |p|2h′ − h2

6
|ph,x|2 ≥ (1 − 2

3
)|p|2h′ =

1

3
|p|2h′ (68)

13



Using (17), we obtain finally

|ph|2 ≥ (1 − 2

3
)|p|2h′ =

1

3
|p|2h′ . (69)

On the right-hand-side, we have by (9), (PS is the Simpson operator defined
in (28,30,31)),

|u|h ≤ C|δ̃xu|h′ ≤ C‖PS‖h′ |p|h′ . (70)

Combining (67), (68), (69), we obtain, (C is a generic constant)

|p|h′ ≤ C|Π0f |h, (71)

and (64) follows from

|u|h ≤ C|δ̃xu|h′ ≤ C ′|p|h′ . (72)

In particular, (40) has a unique solution, since f ≡ 0 gives Π0f ≡ 0 therefore
p ≡ 0 and u ≡ 0 by (64).
(ii) We note eu = ũ − u ∈ l2h,0, ep = p̃ − p ∈ l2h, respectively the grid error

functions for u and p. For all v ∈ l2h, we have by (13),

(δ̃xeu, v)h′ = −(eu, δ̃xv)h′ . (73)

Choosing the test function v = ep ∈ l2h as the error on p, we have

(δ̃xeu, ep)h′ = −(eu, δ̃xep)h′ . (74)

But, due to the fact that δxpj = δxp̃j = −Π0fj, j = 2, ..N − 1, we have

δ̃xep
j = 0, j = 2, ...N − 1. Furthermore, since eu

1 = eu
N = 0, we deduce

(eu, δ̃xep)h′ = 0 , (75)

and therefore
(δ̃xeu, ep)h′ = 0. (76)

Now, we deduce from (42), that the error eu = ũ − u verifies in l2h,

δ̃xeu = δ̃xũ − δ̃xu = PS p̃ + kS − PSp = PSep + kS , (77)

therefore, by (76),

(PSep, ep)h′ = (δ̃xeu, ep)h′ − (kS , ep)h′ = −(kS , ep)h′ . (78)

On the left-hand side, we have

C|ep|2h′ ≤ C|ep
h|2 ≤ (PSep, ep)h′ , (79)

14



and the right-hand-side is estimated by

|(kS , ep)h′ | ≤ |kS |h′ |ep|h′ . (80)

Using (35), we find

|kS |h′ ≤ C

[
h3/2|f |∞,[0,h]∪[1−h,1] + h4|f (3)|∞,[0,1]

]
, (81)

where the first term in the r.h.s. of (81) is due to the 2 boundary points
and the other term is due to the interior points j = 2, ..,N − 2. Finally,

|p̃ − p|h′ = |ep|h′ ≤ |kS |h′ . (82)

Coming back to (77), the error on u is estimated by

δ̃xeu = PSep + kS , (83)

we obtain

|δ̃xeu|h′ ≤ |PSep|h′ + |kS |h′ ≤ ‖PS‖h′ |ep|h′ + |kS |h′ ≤ |ep|h′ + |kS |h′ , (84)

and (65) results from (82, 81,84) and the Poincaré inequality (9). �

Note that the consistency error at interior points is 4. The loss of accu-
racy comes from the boundary conditions. However, that loss of accuracy is
also the origin of the stability of the scheme. We do not investigate further
alternative quadrature rules for p as well as other boundary conditions, be-
cause Simpson rule has given good results so far. Note that the error ep

j in
p takes only two values, one for j odd, and one for j even.

4.2 Mixed Finite Element interpretation

In this section, we show the mixed finite element form of the HB scheme
(42). We refer to [1], [7], [23] for classical references on that type of methods.

This form is non-standard and one has to use the unknowns (uh, ph) ∈
P 1

c,0 × P 1
c . If vh ∈ P 1

c,0 is any test function, we call qh ∈ P 1 the gradient

of vh in the sense of (63), that is the projection of vh on the space of P 1

functions.
In the two following propositions, we summarize simple facts on the finite

element formulation of scheme (42).
The Hilbert spaces are

• u ∈ H1
0 (]0, 1[), equipped with the norm |u|1 = |ux|L2(0,1).

• p ∈ L2(0, 1), equipped with the norm |p| = |p|L2(0,1).
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and the variational formulation of the Poisson problem is: find (u, p) ∈
H1

0 × L2 solution of

{
(p, vx) = (f, v) ; ∀v ∈ H1

0 ,
(p − ux, q) = 0 ; ∀q ∈ L2.

(85)

We have a conforming approximation,

uh ∈ P 1
c,0 ⊂ H1

0 , ph ∈ P 1
c ⊂ L2. (86)

We denote for all f ∈ L2[0, 1],

• The grid function (Π0f)j ∈ l2h,0 defined by

(Π0f)j =
1

2h

∫ xj+1

xj−1

f(x)dx, (87)

with matching P 1
c function (Π0f)h. It is called the Clement interpolate

of f(x).

• The piecewise constant orthogonal projection Π̄0f(x) ∈ P 0 defined on
[xj , xj+1] by

Π̄0fj+1/2 =
1

h

∫ xj+1

xj

f(x)dx. (88)

• The piecewise affine orthogonal projection Π1f(x) ∈ P 1
c defined by

(f − Π1f, vh) = 0 , ∀vh ∈ P 1
c . (89)

The following result is easy to verify,

Proposition 4.1 (i) The HB scheme (42) is equivalent to the mixed finite
element method: find (uh, ph) ∈ P 1

c,0 × P 1
c solution of

{
−(ph,x, vh) = (Π̄0f, vh) , ∀vh ∈ P 1

c,0 , (a)

(ph − uh,x, qh) = 0 , ∀qh ∈ P 1
c , (b)

(90)

(ii) uh ∈ P 1
c,0 is the solution of

(
Π1(uh,x), vh,x

)
= (Π̄0f, vh) , ∀vh ∈ P 1

c,0 (91)

Note also that (90)a can be rewritten as

−(ph,x, Π̄
0(vh)) = (f, Π̄0(vh)). (92)

The setting of the HB scheme (42) according to the mixed finite element
formalism is derived as follows.

Consider

16



• The bilinear form a defined on P 1
c × P 1

c by

a(ph, qh) = (ph, qh). (93)

• The bilinear form b defined on P 1
c × P 1

c,0 by

b(ph, vh) = (ph, vh,x). (94)

Proposition 4.2 The HB scheme (42) is equivalent to the mixed finite el-
ement method:
find (uh, ph) ∈ P 1

c,0 × P 1
c solution of

{
b(ph, vh) = Lf (vh) , ∀vh ∈ P 1

c,0

a(ph, qh) − b(qh, uh) = 0 , ∀qh ∈ P 1
c ,

(95)

where the linear form Lf is given by

Lf (vh) = [(Π0f)h, vh] +
h2

6
[(Π0fh)x, vh,x] (= (Π̄0f, vh)). (96)

The well-posedness and error estimates for (90) are deduced from the fol-
lowing two properties of mixed formulations, see [1, 7, 23, 12]:

• Coercivity of the bilinear form a(ph, qh) on the kernel space Vh defined
by

Vh =

{
ph ∈ P 1

c such that b(ph, vh) = 0 , ∀vh ∈ P 1
c,0

}
. (97)

That property is straightforward here since

a(p, p) = |p|2L2[0,1]. (98)

• The inf-sup property of the form b(ph, vh) between the spaces P 1
c and

P 1
c,0, which is

sup
qh∈P 1

c ,|qh|≤1

|b(qh, uh)| ≥ C|uh| , ∀u ∈ P 1
c,0. (99)

Note that
b(qh, uh) = (qh, uh,x) = (δ̃xu, q)h′ . (100)

Selecting qh ∈ P 1
c matching the grid function q = δ̃xu gives, for all u ∈ l2h,0,

|b(qh, uh)| = |δ̃xu|2h′ ≥ C|u|2h ≥ C ′|uh|2, (101)

where we have used (9).
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The error estimates deduced from the general theory of mixed form of
FEM, [1], [23], [12], allows to obtain the first order error estimate

|p − ph| + |ux − uh,x| ≤ Ch|f |L2[0,1]. (102)

which is less informative than (65).
Observe that the superconvergence properties (65) are more easily de-

tected in the framework of the compact schemes, than in the one of the
mixed finite element method.

5 Numerical results

5.1 Introduction

In this section, we display some numerical results which allow to observe
practical features of the hermitian box scheme. The scheme that is used is
basically (42). In the case of a diffusion function k(x) piecewise continuous,
we use a slightly modified version of (42), as explained below. The following
observations can be made:

• We observe for regular problems a fourth order accuracy of the scheme
for u in both the L2 and the L∞ norms.

• We observe for regular problems a remarkable superconvergence result
for the gradient, on very coarse grids.

• The scheme is able to produce good approximations, even on under-
resolved grids.

• The scheme is able to handle very strong contrasts in the ellipticity
coefficient.

• For elliptic problems with high contrasts, the scheme produces in the
worst case a first order convergence rate in the discrete H1 norm, and
most of the time a better convergence rate. Furthermore, the levels of
the error are much smaller than the usual finite element method.

All the computations have been performed with matlab. The discrete L2,
H1 and L∞ errors are defined by





|u − uh|h =

[
h

∑

i

(u(xi) − ui)
2

]1/2

(a),

‖u − uh‖1,h =

[
h

N∑

i=1

|ui − u(xi)|2 + |pi − u′(xi)|2
]1/2

(b),

|u − uh|∞,h = sup
j=1,..N

|u(xi) − ui| (c).

(103)
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5.2 1D regular Poisson problem

We report here some numerical results for the Poisson problem (19), to verify
the accuracy of the solution of scheme (42) for the following exact solutions.
Note that the integration of the source term f(x) = −u′′(x) is evaluated
exactly in (42)a′ .

• u(x) = sin(nπx), with n ≥ 1, 0 < x < 1.
We observe for different values of n a 4th order convergence rate for
u. Furthermore, we observe that the scheme is numerically exact for
the flux p(x) = u′(x), independently of the parity of N and of the
wavenumber n.

• u(x) = sin(16πx2), 0 < x < 1.
The oscillations are non uniform on [0, 1]. To compute the convergence
rate, we take a value of h starting from h = 1/128, which corresponds
to an underresolved grid, to h = 1/2048. We observe on Table 1 that
the scheme exhibits a superconvergence rate of 2 for u and 4 for p in
the L∞ norm. On Fig. 2, we report the very good behaviour of (u, p)

Mesh size |u − uh|h |u − uh|h,∞ |p − ph|h |p − ph|h,∞

nx =129 8.651(-5) 2.899(-3) 4.939(-5) 5.882(-4)

conv. rate 2.87 2.89 4.67 4.16

nx =257 1.180(-5) 3.891(-4) 1.930(-6) 3.273(-5)

conv. rate 2.53 2.42 4.54 4.04

nx =513 2.013(-6) 7.243(-5) 8.274(-8) 1.989(-6)

conv. rate 2.51 2.13 4.51 4.00

nx =1025 3.537(-7) 1.651(-5) 3.628(-9) 1.235(-7)

conv. rate 2.50 2.03 4.50 4.00

nx =2049 6.244(-8) 4.028(-6) 1.600(-10) 7.705(-9)

Table 1: Error and convergence rate for the 1D Poisson problem with u(x) =
sin(16πx2).

on a very coarse 65 points grid with only 5 points per wavelenght near
x = 1.

5.3 Elliptic 1D problems with high contrasts

We assume here that kj = k(xj) are the values of the diffusion k(x) at
points xj . The hermitian box scheme for the elliptic problem (1) is: U =
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Figure 2: Solution uj ≃ u(xj) and pj ≃ u′(xj) of Test Problem (19) with exact
solution u(x) = sin(16πx2), with 65 points (h = 1/64), (circles: computed, solid
line: exact).

[u1, u2, ...uN−1, uN ] ∈ l20, P = [p1, p2, ...pN−1, pN ] ∈ l2 solution of





−δx(kp)j = Π0fj , 2 ≤ j ≤ N − 1 (a)

pj +
h2

6
δxpj = δxuj , 2 ≤ j ≤ N − 1 (b)

u1 = uN = 0, Dirichlet conditions (c)

p1 +
h

3
δ+
x p1 = δ+

x u1 (d)

pN − h

3
δ−x pN = δ−x uN (e).

(104)

Note that we still keep the gradient of the solution pj ≃ u′(xj) as the
secondary unknown, regardless to the fact that this gradient is discontinuous
when k(x) is discontinuous. In addition, we do not consider any upscaling
of k(x), [22].

Since the Simpson average operator is pertinent only when the exact
solution is sufficiently regular, we switch back locally around discontinuity
points of k(x) to the following trapezoidal formula for the approximation
of the average of the gradient. Specifically, we have used at points xj in a
small neighborhood of a discontinuity point x0 of k(x) the following scheme





−δx(kp)j = Π0fj (a)

pj +
h2

4
δxpj = δxuj (b).

(105)

In this section, we report numerical results obtained with the scheme (104-
105) on three interesting cases proposed by Nielsen, [24], in his study of the
convergence order of the finite element method for elliptic problems with
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arbitrary small ellipticity. In that case, the convergence results obtained in
Section 5 are no longer valid, since in general, the exact solutions belong to
the space H1 and are not more regular.

In all cases, Nielsen reported in [24] first order convergence rates in the
full H1 norm to illustrate the first order convergence rate proved theoreti-
cally for elliptic problems with high contrasts, when the source term vanishes
in areas of low permeability. In our results, we are specifically interested in
practical pointwise superconvergence for u and p, so we provide the error in
the discrete H1 norm (103)b.

• Case 1 - The problem is

{
−(k(x)ux)x = f(x) , 0 < x < 3
u(0) = 0 , u(3) = 1,

(106)

with a diffusion and source term given by

(f(x), k(x)) =





(1, 1) , 0 ≤ x ≤ 1
(0, δ) , 1 < x < 2
(1, 1) , 2 ≤ x ≤ 3,

(107)

where δ > 0 is a constant. The numerical results are compared with
the exact solution, [24],

u(x) =





3δ + 1

2δ + 1
x − 1

2
x2 , 0 ≤ x ≤ 1,

(3δ + 1

2δ + 1
− 1

2

)
+

1

2δ + 1
(x − 1) , 1 < x < 2,

−
( 3δ

2δ + 1
+

1

2

)
+

5δ + 2

2δ + 1
x − 1

2
x2 , 2 ≤ x ≤ 3.

(108)

We observe on Table 2 a 1.5 convergence rate in the discrete H1 norm.
On Fig. 3, we display the computed solution on a coarse grid of 61
points with δ = 1/16, in order to observe the good behaviour of the
scheme for u and p.

• Case 2 - The problem is the same as (106) with a diffusion coefficient
given in (107), but with a source term replaced in (107) by f(x) ≡ 1
for 0 ≤ x ≤ 3.

u(x) =





8δ + 3

4δ + 2
x − 1

2
x2 , 0 ≤ x ≤ 1,

3δ2 − 2δ − 1

δ(2δ + 1)
+

8δ + 3

δ(4δ + 2)
x − 1

2δ
x2 , 1 < x < 2,

1 − δ

2δ + 1
+

8δ + 3

4δ + 2
x − 1

2
x2 , 2 ≤ x ≤ 3.

(109)
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δ = 1
2 δ = 1

4 δ = 1
8 δ = 1

16

h ‖u − uh‖1,h ‖u − uh‖1,h ‖u − uh‖1,h ‖u − uh‖1,h

10−1, nx = 31 5.329 (-3) 1.189 (-2) 1.911 (-2) 2.520 (-2)

conv. rate 1.51 1.50 1.51 1.52

20−1, nx = 61 1.862 (-3) 4.184 (-3) 6.697 (-3) 8.781 (-3)

conv. rate 1.50 1.50 1.50 1.51

40−1, nx = 121 6.557 (-4) 1.476 (-3) 2.358 (-3) 3.083 (-3)

conv. rate 1.50 1.50 1.50 1.50

80−1, nx = 241 2.314 (-4) 5.213 (-4) 8.318 (-4) 1.086 (-3)

conv. rate 1.50 1.50 1.50 1.50

160−1, nx = 481 8.176 (-5) 1.842 (-4) 2.937 (-4) 3.834 (-4)

Table 2: Error and convergence rate for Test Case 1 (106, 108).
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Figure 3: Solution uj ≃ u(xj) and pj ≃ u′(xj) of Test Case 1, (106,108) with 61
points (h = 1/20), δ = 1/16, (circles: computed, solid line: exact).

We report in Table 3, the results obtained with the scheme (104),
(105). The HB scheme is less accurate in that case, with a measured
convergence rate of 1 in the discrete H1 norm, and the convergence
rate is not better than the one of the finite element method, with full
H1 norm, [24]. Fig. 4 shows the computed solution in this case on the
coarse 61 points grid. Whereas the computed solution appears to be
very good on the gradient p, a lack of accuracy is observable on u. An
enhancement of the quadrature rule (105)b seems needed in this case.

• Case 3 - The third problem in [24] is problem (106) with source term
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δ = 1
2 δ = 1

4 δ = 1
8 δ = 1

16

h ‖u − uh‖1,h ‖u − uh‖1,h ‖u − uh‖1,h ‖u − uh‖1,h

10−1, nx = 31 2.715(-2) 0.1040 0.2862 0.6770

conv. rate 1.05 1.02 1.01 1.01

20−1, nx = 61 1.307(-2) 5.104(-2) 0.1416 0.3360

conv. rate 1.03 1.02 1.00 1.00

40−1, nx = 121 6.396(-3) 2.526(-2) 7.042(-2) 0.1674

conv. rate 1.02 1.01 1.00 1.00

80−1, nx = 241 3.162 (-3) 1.257 (-2) 3.511 (-2) 8.351 (-2)

conv. rate 1.00 1.00 1.00 1.00

160−1, nx = 481 1.572 (-3) 6.267 (-3) 1.753 (-2) 4.171 (-2)

Table 3: Error and convergence rate for the Test Case 2, (106, 108).
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Figure 4: Solution uj ≃ u(xj) and pj ≃ u′(xj) of Test Case 2 (106, 109) with 61
points (h = 1/20), δ = 1/16, (circles: computed, solid line: exact).

f(x) ≡ 0 and the smooth ellipticity coefficient

k(x) =
(
x − 3

2

)2
+ δ , 0 ≤ x ≤ 3, (110)

with a value δ at abscissa 3/2. The exact solution is

u(x) =
(
2 arctan(

3/2√
δ

)
)−1

arctan
(x − 3/2√

δ

)
+

1

2
, 0 ≤ x ≤ 3 (111)

Since k(x) is a regular function, we use for Case 3 the scheme (42)
with the Simpson operator without any modification. We observe on
Table 4 a convergence rate of 2.5 in the discrete H1 norm (103)b, with
very good error levels. A superconvergence phenomenon happens also
in that case.
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δ = 1
2 δ = 1

4 δ = 1
8 δ = 1

16

h ‖u − uh‖1,h ‖u − uh‖1,h ‖u − uh‖1,h ‖u − uh‖1,h

10−1, nx = 31 1.4557 (-4) 1.2202 (-4) 1.0681 (-4) 3.1966 (-4)

conv. rate 2.50 2.50 2.61 4.52

20−1, nx = 61 2.5721 (-5) 2.1660 (-5) 1.7418 (-5) 1.3947 (-5)

conv. rate 2.50 2.51 2.50 2.50

40−1, nx = 121 4.5451 (-6) 3.8112 (-6) 3.0781 (-6) 2.4595 (-6)

conv. rate 2.50 2.50 2.50 2.50

80−1, nx = 241 8.0331 (-7) 6.7368 (-7) 5.4412 (-7) 4.3459 (-7)

conv. rate 2.50 2.50 2.50 2.50

160−1, nx = 481 1.4200 (-7) 1.1908 (-7) 9.6187 (-8) 7.6822 (-8)

Table 4: Error and convergence rate for Test Case 3, (106,110).
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Figure 5: Solution uj ≃ u(xj) and pj ≃ u′(xj) of Test Case 3, (106,110) with 61
points (h = 1/20), (circles: computed, solid line: exact).

• Case 4 - We keep the same problem as in the previous case. In order
to demonstrate the behaviour of the HB scheme for problems with an
ellipticity coefficient with very high contrasts and smooth variations,
we give in Table 5 the levels of the errors in the discrete H1 norm for a
value of the parameter δ = 1/64, 1/256, 1/2048, 1/8192 on grids with
h from 3/40 to h = 3/2560. The convergence rate seems to tend to 2.5
after a superconvergence phase. The levels of the errors on the final
grid are very good.
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δ = 1
64 δ = 1

256 δ = 1
2048 δ = 1

8192

h ‖u − uh‖1,h ‖u − uh‖1,h ‖u − uh‖1,h ‖u − uh‖1,h

3/40, nx = 41 3.648 (-3) 6.737 (-2) 0.354 1.073

conv. rate 8.33 4.28 2.43 1.61

3/80, nx = 81 1.135 (-5) 3.469 (-3) 6.562 (-2) 0.351

conv. rate 3.83 8.08 4.30 2.44

3/160, nx = 161 7.984 (-7) 1.285 (-5) 3.338 (-3) 6.477 (-2)

conv. rate 2.54 6.59 8.03 4.28

3/320, nx = 321 1.368 (-7) 1.332 (-7) 1.272 (-5) 3.333 (-3)

conv. rate 2.50 3.00 8.01 8.05

3/640, nx = 641 2.414 (-8) 1.660 (-8) 4.921 (-8) 1.255 (-5)

conv. rate 2.50 2.54 4.12 5.72

3/1280, nx = 1281 4.266 (-9) 2.845 (-9) 2.830 (-9) 2.387 (-8)

conv. rate 2.50 2.50 2.99 4.50

3/2560, nx = 2561 7.541 (-10) 5.019 (-10) 3.545 (-10) 1.050 (-9)

Table 5: Error and convergence rate for Test Case 4, (106), (110)

6 Conclusion

We have presented a finite difference scheme apparently new in its design,
combining the computation of the gradient of the solution using a hermitian
collocation method, with a discrete version of the conservation law at the
level of a box of lenght 2h. This scheme allows to have a local accuracy for
u and p directly linked to the one of a quadrature rule, and good stability
properties. The numerical results displayed on elliptic problems with high
contrasts in the diffusion coefficient seem very promising. The levels of error
are especially good on the gradient p. Further investigations on the design
of the quadrature rule for the gradient are clearly needed, to have a better
understanding of the stability and convergence properties of the scheme.
Furthermore, the extension to multidimension is in progress.

Acknowledgement: The author expresses his gratitude to an anonymous
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