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Abstract. In this paper we review fourth-order approximations of the biharmonic operator in one, two and three
dimensions. In addition, we describe recent developments on second and fourth order finite difference approxima-
tions of the two dimensional Navier-Stokes equations. The schemes are compact both for the biharmonic and the
Laplacian operators. For the convective term the fourth order scheme invokes also a sixth order Pade approxi-
mation for the first order derivatives, using an approximation suggested by Carpenter-Gottlieb-Abarbanel in [7].
We also introduce the derivation of a pure streamfunction formulation for the Navier-Stokes equations in three
dimensions.
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1. The one-dimensional Three-Point Biharmonic operator

1.1. Design of the discrete biharmonic operator. We consider here the one-dimensional biharmonic equation
on the interval [0, 1]. For the simplicity of the presentation, we choose homogeneous boundary conditions. The
one-dimensional biharmonic equation is

(1)

{

ψ(4)(x) = f(x), 0 < x < 1
ψ(0) = 0, ψ(1) = 0, ψ′(0) = 0, ψ′(1) = 0.

We look for a high-order compact approximation for (1). We lay out a uniform grid 0 = x0 < x1 < ... < xN−1 <
xN = 1. Here, xi = ih for 0 ≤ i ≤ N .

Assume that we are given data on the values of ψ and its derivative at xj−1, xj , xj+1. In particular, we are
given ψj−1, ψj , ψj+1, which approximate

(2) ψ(xj−1), ψ(xj), ψ(xj+1)

and ψx,j−1, ψx,j , ψx,j+1, which approximate

(3) ψ′(xj−1), ψ
′(xj), ψ

′(xj+1).

We consider a fourth order polynomial Q(x),

(4) Q(x) = a0 + a1(x− xj) + a2(x− xj)
2 + a3(x− xj)

3 + a4(x− xj)
4.

For Q(x) we require the five interpolation conditions

(5)

{

Q(xj−1) = ψj−1 ; Q(xj) = ψj ; Q(xj+1) = ψj+1

Q′(xj−1) = ψx,j−1 ; Q′(xj+1) = ψx,j+1.

As usual, we define the difference operators δx, δ
2
x by

(6) δxψj =
ψj+1 − ψj−1

2h
.

(7) δ2xψj =
ψj+1 − 2ψj + ψj−1

h2
.
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Problem (5) has a unique solution, which is given by

(8)











































(a) a0 = ψj ,

(b) a1 =
3

2
δxψj −

1

4
(ψx,j+1 + ψx,j−1),

(c) a2 = δ2xψj −
1

2
(δxψx)j ,

(d) a3 =
1

h2
(δxψj − ψx,j)

(e) a4 =
1

2h2

(

(δxψx)j − δ2xψj
)

.

Therefore, it is natural to approximate ψ(4)(xj) by the fourth order derivative of Q(x) at point xj . Thus,

(9) ψ(4)(xj) ≃ 24a4 =
12

h2

(

(δxψx)j − δ2xψj
)

.

Actually, the finite difference operator in (9) depends on the two grid functions ψ and ψx. If we are interested in
an approximation depending only on the data ψ, then we need to construct ψx as a function of ψ. A natural way
to derive such an approximation is to require in Equation (8)(b) that ψx,j satisfy ψx,j = a1 identically. This is
equivalent to the following identity.

(10) ψx,j =
3

2
δxψj −

1

4
(ψx,j+1 + ψx,j−1) , 1 ≤ j ≤ N − 1

or equivalently

(11)
1

6
ψx,j−1 +

2

3
ψx,j +

1

6
ψx,j+1 = δxψj , 1 ≤ j ≤ N − 1.

If we introduce the three-point operator σx on grid functions by

(12) σxφi =
1

6
φi−1 +

2

3
φi +

1

6
φi+1, 1 ≤ i ≤ N − 1,

we can rewrite (11) as

(13) σx(ψx)i = δxψi, 1 ≤ i ≤ N − 1.

Recall that

(14) ψx,0 = ψ′
0, ψx,N = ψ′

N .

need to be known in order to solve (13). Observe that we have the following operator equality (in the space of grid
functions),

(15) σx = I +
h2

6
δ2x.

We refer to σx as the Simpson operator. Equation (11) form an implicit system of equations for {ψx,j}N−1
j=1 . This

method for the approximation of the exact derivatives {ψ′
j}N−1
j=1 is called the Hermitian discrete gradient. It relates

the vector Ψx, which contains the approximate derivatives of ψ, to the vector Ψ, which contains the values of ψ at
the grid points.

The approximation (9) suggests now an approximation δ4xψj to ψ(4)(xj).

(16) δ4xψj =
12

h2
(δxψx − δ2xψ), 1 ≤ j ≤ N − 1.

We refer to (16) as the Three-Point Discrete Biharmonic for ψ(4).
Using (16 ) and (11), the solution of (1) may be approximated by the scheme

(17)











(a) δ4xψj = f(xj) 1 ≤ j ≤ N − 1,

(b)
1

6
ψx,j−1 +

2

3
ψx,j +

1

6
ψx,j+1 = δxψj , 1 ≤ j ≤ N − 1,

(c) ψ0 = 0, ψN = 0, ψx,0 = 0, ψx,N = 0.

We define the discrete space

(18) l2h,0 = {ψi, 1 ≤ i ≤ N − 1, ψ0 = ψN = 0},
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normed by |ψ|h = (h
∑N−1
i=1 ψ2

i )
1/2.

The scheme in (17) is the one-dimensional restriction of the scheme proposed by Stephenson in [13]. In the
sequel, this approximation is referred to as the one-dimensional Stephenson Scheme to the biharmonic equation.
The consistency of the scheme is given in the following proposition.

Proposition 1.1. Suppose that ψ(x) is a smooth function on [0, 1]. Assume, in addition, that ψ(0) = ψ(1) = 0,
ψ′(0) = ψ′(1) = 0. Let ψ∗

i = ψ(xi), (ψ(4))∗(xi) = ψ(4)(xi) be the grid functions corresponding, respectively, to
ψ,ψ(4). Then the three-point biharmonic operator δ4x satisfies the following accuracy properties:
•

(19) |σxδ4xψ∗
i − σx(ψ

(4))∗(xi)| ≤ Ch4‖ψ(8)‖L∞ , 2 ≤ i ≤ N − 2.

• At the near boundary point i = 1, the fourth order accuracy of (19) drops to first order,

(20) |σxδ4xψ∗
1 − σx(ψ

(4))∗(x1)| ≤ Ch‖ψ(5)‖L∞ ,

with a similar estimate for i = N − 1.
• The error in the energy norm is given by

(21) |δ4xψ∗ − (ψ(4))∗|h ≤ Ch3/2(‖ψ(5)‖L∞ + ‖ψ(8)‖L∞).

In the above estimates C is a generic constant, that does not depend on ψ.

1.2. Matrix representation of one-dimensional finite difference operators. In this section we briefly review
matrix representations of several finite difference operators, including the Three-Point Discrete Biharmonic.

1.2.1. Centered gradient. In the case of Dirichlet boundary conditions, the matrix representation of the operator
ψ∗ 7→ δxψ

∗ is

(22)
1

2h
KΨ,

where Ψ = [ψ1, ...ψN−1]
T . The antisymmetric matrix K = (Ki,m)1≤i,m≤N−1 is

(23) K =















0 1 0 . . . 0
−1 0 1 . . . 0
...

...
... . . .

...
0 . . . −1 0 1
0 . . . 0 −1 0















.

1.2.2. Hermitian gradient. The Hermitian gradient, defined in (17)(b), is the finite difference compact operator

(24) Ψ 7→ Ψx.

The vector Ψx = [ψx,1, ψx,2, · · · , ψx,N−2, ψx,N−1] is the solution of the linear system (11), (14). In matrix form,
this system can be written as

(25) Ψx =
3

h
P−1KΨ,

where P is the tridiagonal matrix

(26) Pi,m =







4, m = i
1, |m− i| = 1
0, |m− i| ≥ 2

, P =















4 1 0 . . . 0
1 4 1 . . . 0
...

...
... . . .

...
0 . . . 1 4 1
0 . . . 0 1 4















.
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1.2.3. Matrix representation of the operator δ2x. The matrix representation of δ2xΨ is − 1
h2TΨ, where T is the

(N − 1) × (N − 1) symmetric matrix

(27) T =















2 −1 0 . . . 0
−1 2 −1 . . . 0
...

...
... . . .

...
0 . . . −1 2 −1
0 . . . 0 −1 2















.

The eigenvalues of T are

(28) λj = 4 sin2(
jπ

2N
), j = 1, · · · , N − 1

and the corresponding normalized eigenvectors are Zk = (Z1k, · · · , ZN−1,k)
T (with respect to the Euclidean norm

in R
N−1 ), where

(29) Zjk =

(

2

N

)1/2

sin
kjπ

N
, 1 ≤ k, j ≤ N − 1.

We denote the column vectors as Zk ∈ R
N−1 and the row vectors as Zj ∈ R

N−1.
The matrix Z = (Zjk)1≤j,k≤N−1 ∈ MN−1(R) is an orthogonal positive-definite matrix. Thus,

(30) Z2 = ZZT = IN−1.

It follows that the matrix T satisfies

(31) T = ZΛZT ,

where Λ = diag(λ1, · · · , λN−1). The normalized vectors (with respect to (| · |h ), which diagonalize the operator
−δ2x, are the grid functions zk, which are defined by

(32) zjk = Zjk/h
1/2.

Equivalently, they may be written as (noting that Nh = 1)

(33) zjk =
√

2 sin
kjπ

N
, 1 ≤ k, j ≤ N − 1.

We have

(34)







zjk =
√

2 sin(j kπN ), j = 1, · · · , N − 1, k = 1, ..., N − 1
z0k = 0, zNk = 0,

−δ2xzk = λ̃kz
k, λ̃k = 4

h2 sin2( kπ2N ), k = 1, · · · , N − 1.

1.2.4. Three-Point Discrete Biharmonic operator. The matrix form of the one-dimensional Stephenson biharmonic
scheme

(35) δ4xψi =
12

h2
(δxψx − δ2xψ)

is obtained from the matrix form of operators ψ∗ 7→ ψ∗
x, ψ

∗ 7→ δ∗xψ and ψ∗ 7→ δ2xψ
∗. We obtain that the matrix

representation of ψ∗ 7→ δ4xψ
∗ is

(36) SΨ =
12

h2

[

3

2h2
KP−1K +

1

h2
T

]

Ψ =
6

h4

[

3KP−1K + 2T

]

Ψ.

The fact that we deal with a boundary value problem, rather than a periodic one, means that PK −KP 6= 0.
However, the commutator is non-zero only at near-boundary points. Using the precise form of this commutator,
we get the following proposition. The proof can be found in [4].

Proposition 1.2. (i) The operator σxδ
4
x has the matrix form

(37) PS =
6

h4
T 2 +

6

h4

[

e1(e1 +KP−1e1)
T + eN−1(eN−1 −KP−1eN−1)

T
]

,

where

(38) e1 = (1, 0, · · · , 0)T , eN−1 = (0, · · · , 0, 1)T .
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(ii) The symmetric positive definite operator δ4x (see (36)) has the matrix form

(39) S =
6

h4
P−1T 2 +

36

h4

(

V1V
T
1 + V2V

T
2

)

,

where the vectors V1, V2 are

(40)























V1 = (α− β)1/2P−1

(√
2

2
e1 −

√
2

2
eN−1

)

V2 = (α+ β)1/2P−1

(√
2

2
e1 +

√
2

2
eN−1

)

.

The constants α, β are

(41)

{

α = 2(2 − eT1 P
−1e1)

β = 2eTN−1P
−1e1.

1.3. Error estimate for the one-dimensional Stephenson scheme. In [3] an error analysis based on a finite
element analogy was derived. The main ingredient consists of the following observation. The bilinear pairing
< ψ,ϕ >= (δ4xψ,ϕ)h defines a scalar product on the discrete space l2h,0 and

< ψ,ϕ > =

N−1
∑

i=0

h
ψx,i+1 − ψx,i

h

ϕx,i+1 − ϕx,i
h

(42)

+
12

h2

N−1
∑

i=0

h

(

ψi+1 − ψi
h

− 1

2
(ψx,i + ψx,i+1)

)(

ϕi+1 − ϕi
h

− 1

2
(ϕx,i + ϕx,i+1)

)

.

This proves the symmetry and coercivity of the bilinear form < ψ,ϕ >. A corollary of (42) is the following

suboptimal error estimate in the energy norm <> between the numerical solution ψ̃ and the collocated exact
solution ψ∗ of (1). Denoting by e = ψ̃ − ψ∗, we have

(43) < e, e >
1/2
h ≤ Ch3/2|f ′′|∞,[0,1].

In order to improve (43), we use the matrix structure of δ4x given in (39).
Consider again the biharmonic equation (1) and its approximation by the Stephenson scheme (17). Let ψ∗ be

the grid function corresponding to ψ. It satisfies

(44) δ4xψ
∗
i = f∗(xi) + ri, 1 ≤ i ≤ N − 1,

where r is by definition the truncation error. We later refer to Proposition 1.1 for estimates on r.
Denote by e the error e = ψ̃ − ψ∗. It satisfies

(45)
δ4xei = −ri, 1 ≤ i ≤ N − 1,
e0 = 0, eN = 0, ex,0 = 0, ex,N = 0.

We prove the following error estimate.

Theorem 1.1. The error e = ψ̃ − ψ∗ satisfies

(46) |e|h ≤ Ch3|log h|,
where C depends only on f .

Proof. Let Ψ̃,Ψ∗ ∈ R
N−1 be the vectors corresponding to ψ̃, ψ∗, respectively, and let F be the vector corresponding

to f∗. We denote by E = Ψ̃ − Ψ∗ and R the vectors corresponding to e = ψ̃ − ψ∗ and r, respectively.
Using the matrix representation (39), we can write Equations (1) and (44) in the form

(47) SΨ̃ = F,

and

(48) SΨ∗ = F +R.

We therefore have

(49) SE = −R.
5



Defining G as the matrix

(50) G = I + 6T−1P 1/2(V1V
T
1 + V2V

T
2 )P 1/2T−1,

we have, in view of (39),

(51) S =
6

h4
P−1/2T G TP−1/2.

As a first step we show that the matrix G is invertible and the spectral radius of its inverse is bounded by one. In
fact, we have

(52) G = I +W1W
T
1 +W2W

T
2 ,

where W1 =
√

6T−1P 1/2V1, W2 =
√

6T−1P 1/2V2. Since W1W
T
1 + W2W

T
2 ≥ 0 (in the sense of comparison of

symmetric matrices), all eigenvalues of G are greater than or equal to one. It follows that the eigenvalues of its
inverse, G−1, are contained in (0, 1] and the matrix norm of G−1 satisfies

(53) |G−1| = ρ(G−1) ≤ 1.

It follows from (51) and the positivity of T, P that S is invertible and that

(54)
E

(49)
= −S−1R

(51)
= − h2

√
6
P 1/2T−1G−1 h2

√
6
T−1P−1/2PR

= −WG−1HPR,

where

(55) W =
h2

√
6
P 1/2T−1, H =

h2

√
6
T−1P−1/2.

We estimate E by the following inequality.

(56) |E| = |S−1R| ≤ |W | · |HPR|.
• Estimate of |W |. Recall that P = 6I − T (see (26), (27)), and that the eigenvalues λj of T are given by

(28). Therefore, the eigenvalues κj , 1 ≤ j ≤ N − 1 of P are given by

(57) κj = 6 − λj = 6 − 4 sin2(
jπ

2N
), 1 ≤ j ≤ N − 1.

By the symmetry of W , we have that |W | = ρ(W ) (the spectral radius of W ). Using the formulas above
for λj and κj , we conclude that the eigenvalues of W are (in view of Equation (55))

h2

4
√

6
sin−2(

jπ

2N
)

√

6 − 4 sin2(
jπ

2N
), 1 ≤ j ≤ N − 1.

Noting that
√

6 − 4 sin2(
jπ

2N
) ≤

√
6, sin(

jπ

2N
) ≥ 2

π
(
jπ

2N
), 1 ≤ j ≤ N − 1,

we conclude that

(58) |W | ≤ C,

where C is independent of N .

• Estimate of the elements of HPR. As in (31), we can diagonalize H = h2

√
6
T−1P−1/2 by

H = ZΛ′ZT ,

where the j-th column of the matrix Z is Zj , as defined in (29). The diagonal matrix Λ′ contains the
eigenvalues of H, which can be written as

θj =
h2

√
6
λ−1
j κ

−1/2
j =

h2

4
√

6

1

sin2( jπ2N )
√

6 − 4 sin2( jπ2N )
, j = 1, · · · , N − 1.
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The element Hi,k of the matrix H is

Hi,k =

N−1
∑

j=1

Zi,jθjZj,k,

for which we have an explicit expression

(59) Hi,k =
N−1
∑

j=1

h2

4
√

6

2

N
sin(

ijπ

N
)

sin( jkπN )

sin2( jπ2N )
√

6 − 4 sin2( jπ2N )
.

We can now estimate the order of the elements of H. In particular, we are interested in the elements of
the first and the last columns of H, since they multiply extreme elements of PR, which are of order O(h)
(see Proposition 1.1). Columns k = 2, ..., N − 2 of H multiply elements k = 2, ..., N − 2 of the PR, where
the latter are O(h4). We consider now elements (i, k) of H for k = 1, N −1. It is enough to consider k = 1.

(60) Hi,1 =

N−1
∑

j=1

h2

4
√

6

2

N
sin(

ijπ

N
)

1

sin2( jπ2N )
√

6 − 4 sin2( jπ2N )
sin(

jπ

N
).

We use the following inequalities

(61) sinx ≥ 2

π
x, 0 ≤ x ≤ π

2
,

(62) | sinx| ≤ |x|,
√

6 − 4 sin2(
jπ

2N
) ≥

√
2.

Noting that h = 1/N and using the estimate | sin( ijπN )| ≤ 1, we obtain

(63) |Hi,1| ≤ C

N−1
∑

j=1

h3 1

(jh)2
(jh) ≤ Ch2|log h|.

For k = 2, ..., N − 2 we have

(64) |Hi,k| ≤ C

N−1
∑

j=1

h3 1

(jh)2
≤ Ch.

Therefore,

(65)

|(HPR)i| ≤
∑N−1
k=1 |Hi,k| · |(PR)k|

= |Hi,1| · |(PR)1| +
∑N−2
k=2 |Hi,k| · |(PR)k| + |Hi,N−1| · |(PR)N−1|

≤ C1h
3|log h| + C2(N − 3)h5 ≤ Ch3|log h|.

Therefore,

(66) |(HPR)i| ≤ Ch3|log h|, 1 ≤ i ≤ N − 1.

Conclusion of the proof of Theorem 1.1. Using (56), (58) and (66) we obtain that the vector E = Ψ̃ − Ψ∗

satisfies

(67) |E| = |S−1R|
(56)

≤ |W | · |HPR|
(58),(66)

≤ C
√

∑N−1
i=1 (h3|log h|)2

= Ch−1/2h3|log h|.
Thus,

(68) |e|h ≤ Ch3|log h|.
This proves the almost third order error estimate result. �
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2. Approximations of the streamfunction formulation of the Navier-Stokes equation in 2D

2.1. Discrete Biharmonic operator in two dimensions. The biharmonic operator ∆2ψ(x, y) is

(69) ∆2ψ(x, y) = ∂4
xψ(x, y) + ∂4

yψ(x, y) + 2∂2
xyψ(x, y).

In two dimensions, the discrete Stephenson biharmonic operator is defined by

(70) ∆2
hψi,j = δ4xψi,j + δ4yψi,j + 2δ2xδ

2
yψi,j .

Define the discrete gradient (ψx, ψy) ∈ (l2h,0)
2 of any ψ ∈ l2h,0 by

(71) σxψx,i,j = δxψi,j σyψy,i,j = δyψi,j , 1 ≤ i, j ≤ N − 1,

where σx, σy are the Simpson operators (see (13), (15)),

(72) σx = I +
1

6
h2δ2x, σy = I +

1

6
h2δ2y.

The one-dimensional operators δ4xψi,j , δ
4
yψi,j are given as functions of ψ,ψx, ψy by (see (16))

(73) δ4xψi,j =
12

h2

(

(δxψx)i,j − (δ2xψ)i,j
)

; δ4yψi,j =
12

h2

(

(δyψy)i,j − (δ2yψ)i,j
)

.

The consistency error in the Stephenson operator is given by

(74) ∆2
hψ = ∆2ψ +

1

6
h2(∂2

x∂
4
yψ + ∂4

x∂
2
yψ) +O(h4).

Therefore, ∆2
h is a second order approximation to the biharmonic operator ∆2. We refer to [13],[3] for a detailed

derivation of the operator ∆2
h.

2.2. Second order scheme for the Navier-Stokes equations. The streamfunction formulation for the two-
dimensional Navier-Stokes equations is the following evolution equation for the streamfunction ψ (see [10]).

(75)







(a) ∂t(∆ψ) + (∇⊥ψ) · ∇(∆ψ) − ν∆2ψ = f(x, y, t) , (x, y) ∈ Ω , t > 0

(b) ψ = ∂ψ
∂n = 0 , (x, y) ∈ ∂Ω , t > 0

(c) ψ(x, y, 0) = ψ0(x, y), (x, y) ∈ Ω.

Here u = ∇⊥ψ = (−∂yψ, ∂xψ) and ν is the kinematic viscosity. The convective term in (75)(a) is C(ψ) =
∇⊥ψ · ∇(∆ψ), or explicitly,

(76) C(ψ) = −(∂yψ)(∆∂xψ) + (∂xψ)(∆∂yψ).

Then, (75) may be written in the following form

(77) ∂t∆ψ + C(ψ) − ν∆2ψ = f(x, y, t).

The spatial discretization is obtained by invoking the following second order approximations.

• The five point discrete Laplacian

(78) ∆hψi,j = δ2xψi,j + δ2yψi,j .

• The Stephenson second-order biharmonic operator (70), which includes the Hermitian gradient (71)
• The convective term C(ψ) is approximated by

(79) Ch(ψ)i,j = −ψy,i,j(∆hψx)i,j + ψx,i,j(∆hψy)i,j .

The expansion of Ch(ψ) in Taylor series gives

(80) Ch(ψ) − C(ψ) = h2

12

(

−∂yψ∂x(∂4
xψ + ∂4

yψ) + ∂xψ∂y(∂
4
xψ + ∂4

yψ)
)

+O(h4).

Therefore, Ch(ψ) is second order accurate with respect to C(ψ). Finally, the semi-discrete form corresponding to
(75) is ( see [3])

(81)
d

dt
∆hψi,j(t) + Ch(ψ(t))i,j − ν∆2

hψi,j(t) = f(xi, yj , t), 1 ≤ i, j ≤ N − 1.

We stress several important properties of (81) compared to other finite-difference schemes. First, (81) is a fully
centered scheme. There is no upwinding for the convective term. In addition, the scheme is compact and relies
on a nine-point stencil. The important advantage here is that there is no need to enforce any local boundary

8



condition on the vorticity. The two boundary conditions (75)(b) are imposed on the values of ψ and its first-order
derivatives, following precisely the continuous formulation.

The semi-discrete form (81) is now time-discretized by an implicit-explicit algorithm as follows. An explicit
modified Euler for the convective term and an implicit Crank-Nicholson scheme for the diffusive term:

(82)

{

(

∆h − ν∆t
4 ∆2

h

)

ψ
n+1/2
i,j = ∆hψ

n
i,j − ∆t

2 Ch(ψ
n
i,j) + ν∆t

4 ∆2
hψ

n
i,j + f

n+1/4
i,j

(

∆h − ν∆t
2 ∆2

h

)

ψn+1
i,j = ∆hψ

n
i,j − ∆t

2 Ch(ψ
n+1/2
i,j ) + ν∆t

2 ∆2
hψ

n
i,j + f

n+1/2
i,j .

Thus, at each time step we solve two systems of linear equations. We refer to [4] for a FFT solver of each of the
linear sets of equations above. This solver uses O(NlogN) operations per time-step, where N is the number of
points in each of the spatial directions (x or y).

Finally, we state the following convergence result for the full Navier-Stokes equation, which was proved in [3].

Theorem 2.1. Let T > 0. Then, there exist constants C, h0 > 0, depending possibly on T, ν and the exact solution
ψ, such that, for all 0 ≤ t ≤ T ,

(83)
(

|δ+x e|2h + |δ+y e|2h
)1/2 ≤ Ch3/2 , 0 < h ≤ h0

Observe that in practice, the numerical results give usually at least second order accuracy (see [6]). Note that,
as was shown in [3], the truncation error for the second-order scheme is O(h2) at interior points and O(h) at near
boundary points. Thus, the truncation error in l2 is O(h3/2) in the non-periodic case. However, in the periodic case
the truncation error is O(h2). Thus, the overall accuracy is O(h2). For a fourth-order scheme, the truncation error
for a periodic problem is O(h4), therefore fourth-order accuracy is recovered. We remark that in the paper by E
and Liu [8] fourth-order accuracy is obtained using fourth-order approximations of vorticity boundary conditions.
In the streamfunction formulation we avoid the use of vorticity boundary conditions. In particular, this allows us
to extend the method to irregular domains [2].

2.3. Fourth order scheme for the Navier-Stokes equations. We outline the fourth order pure streamfunction
scheme, presented in [5] for the equation (75).

The fourth order discrete Laplacian ∆̃hψ and biharmonic ∆̃2
hψ operators introduced in [5] are perturbations of

the second order operators ∆hψ and ∆2
hψ. They are designed as follows. The fourth order Laplacian is

(84) ∆̃hψ = 2∆hψ − (δxψx + δyψy).

Here, ψx, ψy are the fourth-order Hermitian approximations to ∂x, ∂y as in (71).
We note that the precise fourth-order truncation error is

(85) ∆̃hψ − ∆ψ =
1

360
h4(∂6

xψ + ∂6
yψ) +O(h6).

The fourth-order approximation to the biharmonic operator ∆2ψ is

(86) ∆̃2
hψ = δ4xψ + δ4yψ + 2δ2xδ

2
yψ − h2

6
(δ4xδ

2
yψ + δ4yδ

2
xψ) = ∆2ψ +O(h4),

where δ4x and δ4y are given in (73).
The associated truncation error in (86) is

(87) ∆̃2
hψ − ∆2ψ = −h4

(

1

720
(∂8
xψ + ∂8

yψ) +
1

72
∂4
x∂

4
yψ − 1

180
(∂2
x∂

6
yψ + ∂6

x∂
2
yψ)

)

+O(h6).

Recall the definition of the convective term (see (76))

(88) C(ψ) = −∂yψ∆(∂xψ) + ∂xψ∆(∂yψ).

Consider the term

(89) ∆(∂xψ) = ∂3
xψ + ∂x∂

2
yψ.

The mixed derivative ∂x∂
2
yψ may be approximated to fourth-order accuracy by ψ̃yyx, where

(90) ψ̃yyx = δ2y∂xψ + δxδ
2
yψ − δxδy∂yψ.

9



The pure third order derivative ∂3
xψ is approximated to fourth-order accuracy by ψ̃xxx, where

(ψ̃xxx)i,j =
3

2h2
(10δxψi,j − [(∂xψ)i+1,j + 8(∂xψ)i,j + (∂xψ)i−1,j ])(91)

=
3

2h2

(

10δxψ − h2δ2x∂xψ − 10∂xψ
)

i,j
.

If ∂xψ and ∂yψ are replaced with sixth-order accurate approximations, then (91) is a fourth-order approximation
for ∂3

xψ .
Thus, a fourth-order approximation for the convective term is (see [5])

(92)

C̃h(ψ) = −ψy
(

∆h∂xψ + 5
2

(

6 δxψ−∂xψ
h2 − δ2x∂xψ

)

+ δxδ
2
yψ − δxδy∂yψ

)

+ ψx

(

∆h∂yψ + 5
2

(

6
δyψ−∂yψ

h2 − δ2y∂yψ
)

+ δyδ
2
xψ − δyδx∂xψ

)

= C(ψ) +O(h4).

In order to retain fourth order accuracy in (92), when replacing (∂x, ∂y) by approximate derivatives, we have to

provide a sixth order approximation for such derivatives. We denote the approximate derivatives by ψ̃x and ψ̃y.
Here we use a Pade relation as given in [7]. It has the following form.

(93)
1

3
(ψ̃x)i+1,j + (ψ̃x)i,j +

1

3
(ψ̃x)i−1,j =

14

9

ψi+1,j − ψi−1,j

2h
+

1

9

ψi+2,j − ψi−2,j

4h
.

At near-boundary points we apply a one-sided approximation for ∂xψ (see [7]). For i = 1 (a point next to the left
boundary) we have

(94)
1

10
(ψ̃x)0,j +

6

10
(ψ̃x)1,j +

3

10
(ψ̃x)i−1,j =

−10ψ0,j − 9ψ1,j + 18ψ2,j + ψ3,j

30h
.

For i = N − 1 we have

(95)
1

10
(ψ̃x)N,j +

6

10
(ψ̃x)N−1,j +

3

10
(ψ̃x)N−2,j =

10ψN,j + 9ψN−1,j − 18ψN−2,j − ψN−3,j

30h
.

In a similar manner we approximate ∂yψ.
To summarize, a fourth order approximation of the convective term is

C̃h(ψ) = −ψy
(

∆hψ̃x +
5

2

(

6
δxψ − ψ̃x

h2
− δ2xψ̃x

)

+ δxδ
2
yψ − δxδyψ̃y

)

(96)

+ ψx
(

∆hψ̃y +
5

2

(

6
δyψ − ψ̃y

h2
− δ2yψ̃y

)

+ δyδ
2
xψ − δyδxψ̃x

)

= C(ψ) +O(h4),

where ψx, ψy are the Hermitian derivatives defined in (71) and ψ̃x, ψ̃y are the approximate derivatives defined by
the Pade relation for 2 ≤ i ≤ N − 2, 1 ≤ j ≤ N − 1, by

(97)























1

3
(ψ̃x)i+1,j + (ψ̃x)i,j +

1

3
(ψ̃x)i−1,j =

14

9

ψi+1,j − ψi−1,j

2h
+

1

9

ψi+2,j − ψi−2,j

4h
1

10
(ψ̃x)0,j +

6

10
(ψ̃x)1,j +

3

10
(ψ̃x)2,j =

−10ψ0,j − 9ψ1,j + 18ψ2,j + ψ3,j

30h
1

10
(ψ̃x)N,j +

6

10
(ψ̃x)N−1,j +

3

10
(ψ̃x)N−2,j =

10ψN,j + 9ψN−1,j − 18ψN−2,j − ψN−3,j

30h
.

Analogous expressions apply to ψ̃y.
Combining all fourth-order spatial discretizations with the implicit-explicit time-stepping scheme in (82) yields

the following scheme.

(98) (∆̃hψi,j)
n+1/2−(∆̃hψi,j)

n

∆t/2 = −C̃hψ(n) + ν
2 [∆̃2

hψ
n+1/2
i,j + ∆̃2

hψ
n
i,j ] + f

n+1/4
i,j

(99) (∆̃hψi,j)
n+1−(∆̃hψi,j)

n

∆t = −C̃hψ(n+1/2) + ν
2 [∆̃2

hψ
n+1
i,j + ∆̃2

hψ
n
i,j ] + f

n+1/2
i,j .

For the application of the pure streamfunction formulation on an irregular domain see [2].
10
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Figure 1. Velocity components for the driven cavity problem. Left: Re = 400, fourth-order
scheme with N = 33 (solid line), [9] with N = 129 (circles). Right: Re = 1000 fourth-order
scheme with N = 65 (solid Line), [9] with N = 129 (circles).
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RE=3200,4th order scheme, N=65 points
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Figure 2. Velocity components for the driven cavity problem. Left: Re = 3200, fourth-order
scheme with N = 65 (solid line), [9] with N = 129 (circles). Right: Re = 5000 fourth-order
scheme with N = 65 (solid Line), [9] with N = 257 (circles).

2.4. Numerical results for the two-dimensional Navier-Stokes equations. We display here results for the
classical driven cavity problem for Reynolds numbers 400, 1000, 3200 and 5000, using the fourth-order scheme.
This problem describes a flow in a square [0, 1] × [0, 1], where on the top boundary y = 1 the flow is driven to
the right with constant velocity (u, v) = (1, 0). On all other three sides of the square - the two components of the
velocity vanish. We display the results of u(1/2, y) and v(x, 1/2) as functions of y and x, respectively. In Fig. 1 we
display the results for Re = 400, 1000, with N = 33, 65, respectively, compared with the values obtained by Ghia,
Ghia and Shin [9] with N = 129.

In Figure 2 we display similar results for Re = 3200, 5000 with N = 65, compared to the results in [9] with
N = 129, N = 257, respectively.
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3. The pure streamfunction formulation in three dimensions

Let Ω be a bounded domain in R3. The three-dimensional Navier-Stokes equations in vorticity-velocity formu-
lation is

(100)

ωt + ∇× (ω × u) − ν∆ω = ∇× f , in Ω
ω = ∇× u, ∇ · u = 0, in Ω
u = 0 on ∂Ω
ω(x, 0) = ω0(x) := ∇× u0, in Ω.

where ω = ∇×u and the no-slip boundary condition has been imposed. The pure streamfunction formulation for
this system is obtained by introducing a streamfunction ψ(x, t) ∈ R3, such that

(101) u = −∇×ψ.
This is always possible since ∇ · u = 0. Thus,

(102) ω = ∇× u = ∆ψ −∇(∇ ·ψ).

Imposing a gauge condition

(103) ∇ ·ψ = 0,

yields

(104) ω = ∆ψ.

The system (100) can now be rewritten as

(105)
∂∆ψ

∂t
−∇× (∆ψ × (∇×ψ)) = ν∆2ψ + ∇× f , in Ω.

The boundary conditions u = 0 translates to ∇×ψ = 0 on ∂Ω. We require that

(106) n ×ψ = 0, n × (∇×ψ) = 0, on ∂Ω.

The condition n × ψ = 0 means that ψ is parallel to n, hence the normal component of the velocity vector is
zero on the boundary. Adding the condition n × (∇ × ψ) = 0 ensures that the full velocity vector vanishes on
the boundary. The requirements in (106) are equivalent to four scalar conditions, namely the vanishing of the two
tangential components of ψ and ∇×ψ.

Turning now to the gauge condition ∇ ·ψ = 0, we add the condition

(107)
∂(ψ · n)

∂n
= 0, on ∂Ω.

Together with the vanishing of the tangential components of ψ, it implies that
∇ ·ψ = 0 on ∂Ω.

Equations (106)-(107) consist of five scalar conditions for ψ on the boundary. We can still add one more scalar
boundary condition, as the equations for the 3- component streamfunction ψ contain the fourth order biharmonic
operator. The sixth scalar boundary condition that we choose to add is

(108) ∆(∇ ·ψ) = 0, on ∂Ω.

We thus obtain

(109) ∇ ·ψ = 0, ∆(∇ ·ψ) = 0, on ∂Ω.

We assume that the initial value ψ(x, 0) satisfies (∇ · ψ)(x, 0) = 0. Taking the divergence of (105) we obtain
an evolution equation for ∇ ·ψ.

(110)
∂∆(∇ ·ψ)

∂t
= ν∆2(∇ ·ψ), in Ω.

Equations (109)-(110) together with the assumption that ∇ · ψ = 0 initially ensure that ∇ · ψ = 0 for all t > 0.
See also [1], [11] and [12]. Finally, we have the following three-dimensional pure streamfunction formulation

(111)











∂∆ψ
∂t −∇× (∆ψ × (∇×ψ)) = ν∆2ψ + ∇× f , in Ω

n ×ψ = 0,
∂(ψ·n)
∂n = 0, on ∂Ω

n × (∇×ψ) = 0, ∆(∇ ·ψ) = 0, on ∂Ω.
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4. The Numerical Scheme

Our numerical scheme is based on the approximation of the following equation

(112)
∂∆ψ

∂t
− ((∇×ψ) · ∇)∆ψ + (∆ψ · ∇)(∇×ψ) − ν∆2ψ = ∇× f , in Ω,

assuming that ψ ∈ H2
0 (Ω). For the vector function ψ we construct a fourth-order approximation to the the

biharmonic operator as follows. The pure fourth-order derivatives are approximated by δ4x, δ
4
y, δ

4
z as in (73.

The mixed term ψxxyy is approximated by

(113) δ̃2xyψi,j,k = 3δ2xδ
2
yψi,j,k − δ2xδyψy,i,j,k − δ2yδxψx,i,j,k = ∂2

x∂
2
yψi,j,k +O(h4)

Similarly for ψyyzz and ψzzxx. A fourth order approximation of the biharmonic operator is then obtained as

(114) ∆̃2
hψ = δ4xψ + δ4yψ + δ4zψ + 2δ̃2xyψ + 2δ̃2yzψ + 2δ̃2zxψ.

The approximate derivatives ψx, ψy and ψz are related to ψ via the Hermitian derivatives as in (71).
Equation (114) provides a fourth order compact operator for ∆2ψ, which involves values of ψ,ψx, ψy and ψz at

(i, j, k) and at its twenty six nearest neighbors. The Laplacian operator is approximated by a fourth order operator
via

(115) ∆̃hψ = 2∆hψ − (δxψx + δyψy + δzψz).

The nonlinear part in (112) consists of two terms, the convective term and the stretching term. We design a
fourth-order scheme which approximates the convective term. The convective term in the three-dimensional case
is

(116) C(ψ) = −((∇×ψ) · ∇)∆ψ = u∆∂xψ + v∆∂zψ + w∆∂zψ.

Here (u, v, w) = u = −∇ × ψ is the velocity vector, whose components contain first order derivatives of the
streamfunction, and thus may be approximated to fourth-order accuracy. The terms ∆∂xψ,∆∂zψ,∆∂zψ may be
approximated as in the two-dimensional case. The term ∆∂xψ, for example, may be written as

(117) ∆∂xψ = ∂3
xψ + ∂x∂

2
yψ + ∂x∂

2
zψ.

Here, the pure and mixed type derivatives may be approximated as in the two-dimensional Navier-Stokes equations
(see (91), (90)). We denote the approximation to the convective term by C̃h(ψ).

Now, we construct a fourth-order approximation to the stretching term S = (ω ·∇)u = −(∆ψ ·∇)(∇×ψ). Note
that the stretching term contains ∆ψ and mixed second order derivatives of the streamfunction. The Laplacian
of ψ may be approximated to fourth-order accuracy, as in (115). The second order mixed terms, such as ∂x∂yψ,
may be approximated using a Hermitian approximation of the type

(118) (σxσy)(ψxy)i,j,k = δxδyψi,j,k.

Hence,

(119) (I +
h2

6
δ2x)(I +

h2

6
δ2y)(ψxy)i,j,k = δxδyψi,j,k , 1 ≤ i, j, k ≤ N − 1

is an implicit equation for ψxy. We denote the approximation of the stretching term by S̃h(ψ).
Our implicit-explicit time-stepping scheme is of the Crank-Nicholson type as follows.

(120) (∆̃hψi,j,k)n+1/2−(∆̃hψi,j,k)n

∆t/2 = −C̃hψ(n)
i,j,k + S̃hψ

(n)
i,j,k + ν

2 [∆̃2
hψ

n+1/2
i,j,k + ∆̃2

hψ
n
i,j,k]

(121) (∆̃hψi,j,k)n+1−(∆̃hψi,j,k)n

∆t = −C̃hψ(n+1/2)
i,j,k + S̃hψ

(n+1/2)
i,j,k + ν

2 [∆̃2
hψ

n+1
i,j + ∆̃2

hψ
n
i,j,k].

Due to stability reasons we have chosen an Explicit-Implicit time stepping scheme. It is possible however to use
an explicit time-stepping scheme if one can afford a small time step in order to advance the solution in time. At
present, a direct solver is invoked to solve the linear set of equations (120)-(121).

Some preliminary computations with coarse grids confirm the fourth order accuracy of the scheme. We first
show numerical results for the time-dependent Stokes equations

(122)
∂∆ψ

∂t
= ν∆2ψ + f , in Ω.
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We have picked the exact solution ψ

(123) ψ
T (x, t) = −1

4
e−t

(

z4, x4, y4
)

in the cube Ω = (0, 1)3. Here, f is chosen such that ψ in (123) satisfied (122) exactly. In the numerical results
shown here we have chosen the time step ∆t of order h2 in order to retain the overall fourth-order accuracy of
the scheme. In practice, if we are interested mainly in the steady state solution, a larger time step, which is
independent of h, may be used. In the first table below we have picked ∆t = 0.1h2. The results for t = 0.00625
are given in the following Table.

grid rate grid rate grid
5 × 5 × 5 9 × 9 × 9 17 × 17 × 17

e 2.5460(-9) 3.82 1.8017(-10) 3.98 1.1443(-11)
ey 7.7417(-9) 3.73 5.8037(-10) 3.96 3.7391(-11)

div (ψ) 1.3409(-8) 3.74 1.0052(-9) 3.96 6.4621(-11)

Here e is the error in the l2h norm, i.e.

e2 =
∑

i

∑

j

∑

k

(ψ3(xi, yj , zk) − ψ̃3(xi, yj , zk))
2h3,

where ψ3 is the z component of the exact solution and ψ̃3 is the z component of the approximate solution. ey is
the l2h in the y derivative of ψ3.

Below are the results with ∆t = h2 for t = 0.0625.

grid rate grid rate grid
5 × 5 × 5 9 × 9 × 9 17 × 17 × 17

e 9.6461(-7) 4.41 4.5309(-8) 4.00 2.8291(-9)
ey 3.0293(-6) 4.33 1.5049(-7) 3.99 9.4269(-9)

div (ψ) 5.2470(-6) 4.33 2.6066(-7) 4.00 1.6328(-8)

Next we show results for the Navier-Stokes Equations

(124)
∂∆ψ

∂t
− ((∇×ψ) · ∇)∆ψ + (∆ψ · ∇)(∇×ψ) − ν∆2ψ = ∇× f , in Ω

in the cube Ω = (0, 1)3. Here, the source term g = ∇× f is chosen such that

ψT (x, t) = −1

4
e−t

(

z4, x4, y4
)

is an exact solution of (124). In the following table we have picked ∆t = 0.1h2 and the results shown here are for
t = 0.00625.

grid rate grid rate grid
5 × 5 × 5 9 × 9 × 9 17 × 17 × 17

e 2.4497(-9) 3.86 1.6924(-10) 4.01 1.0473(-11)
ey 7.6486(-9) 3.75 5.6845(-10) 3.98 3.5917(-11)

div (ψ) 1.2294(-8) 3.71 9.3619(-10) 3.92 6.1700(-11)

In the next table we show again results for the Navier-Stokes Equations in the cube Ω = (0, 1)3, but now with
∆t = h2 for t = 0.0625.

grid rate grid rate grid
5 × 5 × 5 9 × 9 × 9 17 × 17 × 17

e 9.4418(-7) 4.46 4.2709(-8) 4.04 2.5934(-9)
ey 2.9836(-6) 4.38 1.4334(-7) 4.03 8.7800(-9)

div (ψ) 5.0471(-6) 4.40 2.3944(-7 4.02 1.4778(-8)

In the figures below we display the errors for Navier-Stokes equations in ψ3 and (ψ3)y at t = 0.0625 with ∆t = h2

and a 173 grid.
Acknowledgment: This paper is dedicated to the memory of Professor David Gottlieb. The first author (Dalia
Fishelov) was one of his first Ph.D. students.
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Figure 3. Navier-Stokes : Errors in ψ3 and (ψ3)y for N = 17, t = 0.0625, dt = h2.

The exact solution is ψT (x, t) = − 1
4e

−t (z4, x4, y4
)

.
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