
INTERPOLATION ON THE CUBED SPHERE WITH SPHERICAL HARMONICS1
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Abstract. We consider the Lagrange interpolation with Spherical Harmonics of data located on the equian-
gular Cubed Sphere. A new approach based on a suitable Echelon Form of the associated Vandermonde

matrix is carried out. As an outcome, a particular subspace of Spherical Harmonics is defined. This sub-

space possesses a particular truncation, reminiscent of the rhomboidal truncation. Numerical results show
the interest of this approach in various contexts. In particular, several examples of resolution of the Poisson

problem on the sphere are displayed.
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1. Introduction3

In this paper, the problem of interpolating data on the equiangular Cubed Sphere with Spherical Harmonics4

is considered. The equiangular Cubed Sphere is a particular spherical grid widely used to discretize problems5

on the sphere. For example, in numerical climatology and meteorology, it is used to support discrete unknowns6

with various approximations procedures, as finite volume schemes.7

A standard computational approach for PDE’s on the sphere is based on the spectral approximation. In8

this case, the discrete unknowns are expanded in a finite sum of Spherical Harmonics. The discrete PDE is9

obtained by collocation at the nodes of the lon-lat grid. Nonlinear terms appearing in the PDE’s are classically10

treated by the pseudospectral method. In this approach, an important parameter is the truncation scheme11

(typically triangular or rhomboidal), which monitors the finite summation limits in the Spherical Harmonics12

series. This impacts both the convergence and the aliasing behaviour of the method.13

Here we are interested to replace the lon-lat grid by the Cubed Sphere. More precisely, having selected14

the Cubed Sphere nodes as location for the discrete unknowns, we wish to interpolate these unknowns with15

a suitable set of Spherical Harmonics. This question seems open in the literature. Apart of its own interest,16

it seems relevant in order to shed light on important mathematical properties of the Cubed Sphere. In17

particular, the ”approximation power” of the Cubed Sphere has been remarked in various contexts, including18

numerical schemes of various kinds [3, 9, 13] and spherical quadrature [10].19

Our first purpose is therefore to introduce a suitable subspace of Spherical Harmonics having the “unisol-20

vence” property when associated to the Cubed Sphere nodes. This particular Lagrange interpolation problem21

is treated here both from the theoretical and the computational point of view. First, we consider the existence22

and uniqueness of a particular set of Spherical Harmonics when restricted to the Cubed Sphere. Contrary23

to the case of the lon-lat grid, this subspace naturally entails the high frequency truncation scheme. The24

truncation here emerges as an outcome of our method, and not as a parameter to be selected. Second, a new25

algorithm to evaluate the Spherical Harmonics representation of a set of data defined on the Cubed Sphere26

is described.27

Beyond its own theoretical interest, this interpolation problem is expected to serve as a suitable framework28

for a discrete harmonic analysis on the Cubed Sphere. This lays out the basis for systematic spectral29

approximations on the Cubed Sphere.30

In Section 2, the background on the Cubed Sphere (abbrev. as CS) and the Spherical Harmonics ( abbrev.31

as SH) is briefly recalled. The setup of the Lagrange interpolation problem (called ”CS/SH”) is described in32

Section 3. This involves the definition of various VanderMonde matrices. Our main Theorem in Section 433

consists in establishing a particular factorization in echelon form of a VanderMonde matrix. An important34

outcome is a computational algorithm, which closely follows the proof of the theorem. Finally in Section 5,35
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various numerical experiments and results are displayed. Some numerical results on the Poisson Problem on36

the sphere are given.37

2. Notation38

2.1. The equiangular Cubed Sphere. We consider the interpolation problem by Spherical Harmonics39

(SH) on the Cubed Sphere CSN , N ≥ 1 being a fixed resolution. In what follows, we assume that a Cartesian40

frame R = (0, i, j, k) is fixed. The definitions depends on this frame.41

The Cubed Sphere grid CSN is defined as the set of 6N2 + 2 nodes with coordinates42

(1) CSN =
{

1√
1+u2

l +u2
m

(±1, ul, um), 1√
1+u2

l +u2
m

(ul,±1, um), 1√
1+u2

l +u2
m

(ul, um,±1)
}

where the ul are equidistribued on [−π/4, π/4] as43

(2) ul = tan lπ
2N .

This equidistribution justifies the name of equiangular Cubed Sphere. These nodes are numbered with the44

index j ∈ J1 : N̄(N)K, where we denote N̄(N) = 6N2 + 2 (simply called N̄ when there is no ambiguity).45

(3) CSN = {xj , j ∈ J1 : N̄K}.

Refer to [12] for more details and to [11] for alternative Cubed Sphere grid.46

2.2. Spherical Harmonics. Our notation for Spherical Harmonic functions is as follows.47

• The set Yn is48

(4) Yn = Span (Y mn (x), −n ≤ m ≤ n) n ≥ 0,

with the SH function Y mn is defined by49

(5) Y mn (x) = Y mn (θ, φ) = (−1)|m|
√

(n+1/2)(n−|m|)!
π(n+|m|)! P |m|n (sin θ)×


sin |m|φ, m < 0,
1√
2
, m = 0,

cosmφ, m > 0.

We denote50

(6)

{
x = (cos θ cosφ, cos θ sinφ, sin θ)

φ ∈ [−π, π], azimuth or longitude and θ ∈ [−π2 , π2 ] elevation or latitude.

In (5), the associated Legendre function is51

(7) P |m|n (t) = (−1)|m|(1− t2)|m|/2 d|m|+n

dt|m|+n
1

2nn! (t
2 − 1)n.

• We denote Yn the set of HS functions of degree less or equal to n,52

(8) Yn = Y0 ⊕ · · · ⊕ Yn.

The set (Y mn )−n≤m≤n is an orthonormal basis of Yn for the scalar product of L2(S2) given by53

(9) (f, g)2 =

∫
S2
f(x)g(x)dσ.

The infinite family (Y mn )|m|≤n,n∈N is a Hilbert basis of L2(S2). We refer to [1, 7] for more details.54
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3. Lagrange interpolation on the Cubed Sphere with Spherical Harmonics55

3.1. General setup. Let (yj)1≤j≤N̄ be a set of values given at the nodes xj . We are interested in finding a56

SH function p(x) satisfying the equations57

(10) p(xj) = yj , ∀1 ≤ j ≤ N̄ .
Problem (CS/HS): Find an integer N ′ = N ′(N) and a subspace Y ′N ′ ⊂ YN ′ , such that the interpolation58

problem (10) with p ∈ Y ′N ′ has a unique solution.59

Observe that the integer N ′ depends of N , and is part of the unknowns. In Section 4 below, we propose60

a constructive algorithm to solve the problem (CS/HS).61

3.2. VanderMonde matrices. We analyse the structure of various Vandermonde matrices (abbreviated as62

VDM) associated to the problem (CS/HS).63

Definition 3.1 (VanderMonde matrices). Let N be the resolution of the Cubed Sphere (1) and N̄ = 6N2 +264

the number of nodes.65

• For k fixed, the rectangular matrix Ak is the VDM matrix associated to the basis Y mk ,−k ≤ m ≤ k66

of the SH space Yk, and to the nodes xj ∈ CSN , is defined by67

(11) Ak , [Y mk (xj)]−k≤m≤k,1≤j≤N̄ ∈ R(2k+1)×N̄ .

• For n fixed, the matrix An is the VDM matrix associated to the basis (Y mk )|m|≤k≤n of the space Yn.68

It is defined by69

(12) An ,

A0

...
An

 ∈ R(n+1)2×N̄ .

Let N ′ be a fixed integer and YN ′ = Y0 ⊕ · · · ⊕ YN ′ . Let p(x) be the HS function with decomposition in70

the Legendre basis71

(13)

p(x) =
∑

0≤n≤N ′

∑
|m|≤n

pmn Y
m
n (x)

= [Y mn (x)]ᵀ[pmn ]

The vector [p(xj)]
ᵀ ∈ RN̄ is expressed in term of the matrix AN ′ and of the components [pmn ] by72

(14) [p(x1), . . . p(xN̄ )]ᵀ = Aᵀ
N ′ [p

m
n ]

Therefore, the interpolation problem (10) is expressed with the VDM matrix AN ′ by the system73

(15) Aᵀ
N ′ [p

m
n ] = y,

where y = [y1, . . . , yN̄ ]ᵀ. A sufficient condition for the VDM matrix An to have full rank results from the74

following result.75

Proposition 3.2 (Lemma 3.13 in [8]). Let Ω = {xj , 1 ≤ j ≤M} ⊂ Sd−1} be a general distribution of nodes76

on the d-dimensional sphere. Let77

(16) sep(Ω) = min
j 6=l

arccos(xᵀ
jxl)

denotes the separation distance of the nodes in Ω. The nodes are called ”q-separated” if sep(Ω) > q. Assuming78

that n is such that n > 2.5πd, then the VDM matrix79

(17) Zn ∈ RM×N , Zn ,
(
Y lk(xj)

)
l=−k...k,j=1,...M

has full row rank M .80

In the particular case where the xj are the nodes of CSN , we call sep(CSN ) the separation distance on81

CSN .82



INTERPOLATION ON THE CUBED SPHERE WITH SPHERICAL HARMONICS 4

Corollary 3.3 (sufficient condition for An to have full column rank). Let n ≥ 1 and let 0 < qN < sep(CSN )83

be such that n > 7.5π
qN

. Then the VDM matrix An ∈ R(n+1)2×N̄ has full column rank N̄ .84

Definition 3.4 (rank and ”rank increment”). For all n ≥ 0, the rank of An is denoted by rn and the rank85

increment between An−1 and An is denoted by gn:86

(18)

{
rn , rankAn, n ≥ 0,

gn , rn − rn−1, n ≥ 0,

with the convention r−1 , 0, g0 , r0.87

By Corollary 3.3, for n large enough, we have rank(An) = N̄ . This justifies the following definition88

Definition 3.5 (integer N ′(N)). We call N ′(N) (or simply N ′ in case of no ambiguity), the smallest integer89

n such that An has full column rank N̄ . Equivalently, N ′ is defined by90

(19) N ′ = min{n ≥ 0 such that rn = N̄}.
It results from Corollary 3.3 that91

(20) N ′ ≤ 7.5π

qN
.

Refer to Remark 5.3 for further comments on the value sep(CSN ).92

4. Constructing a SH subspace on the Cubed Sphere93

In this section we give a constructive algorithm to build a subspace Y ′N ′ of SH functions solving the problem94

(CS/HS) above. It consists in constructing a suitable factorization of the sequence of matrices (An)n≥0. The95

factorization itself will reveal both the sequence (rn)≥0 and the integer N ′ in (19). See also Section 5.1 below.96

4.1. Echelon form of matrices. We recall the definition of a matrix in Column Echelon form (abbreviated97

CE form).98

Definition 4.1 (Column Echelon form). Let A ∈ Rm×n be a rectangular matrix. The matrix A is said to99

be in CE form, if there is some r ∈ J1 : nK such that100

• the columns j ∈ J1 : rK are nonzero, where the index j 7→ i(j) of the first nonzero coefficient a non101

decreasing function. (The coefficient A(i(j), j), 1 ≤ j ≤ r, is called the pivot of the column j).102

103

• the columns j ∈ Jr + 1 : nK are zero.104

A matrix A ∈ Rm×n can be reduced in CE form using Gaussian elimination with partial pivoting on the105

columns. In addition, the number r of pivots represents the rank of the matrix.106

In the sequel, we show that the VDM matrix An in (12) can be expressed in CE form by mean of suitable107

orthogonal matrices.108

4.2. Factorization of the VDM matrix An. In the next theorem, we establish a particular factorization109

of the VanderMonde matrix An. This factorization serves to define a computational procedure to identify110

a space Y ′n ⊂ Yn satisfying (10). As a byproduct, the maximal degree N ′ in (19) and the rank increment111

sequence (gn)0≤n≤N̄ will be identified as well.112

Recall that the VDM matrix An is defined by113

(21) An ,

A0

...
An

 ∈ R(n+1)2×N̄ .

Theorem 4.2 (Structure of An). Let n ≥ 0.114

The matrix An can be factorized in the form115

(22) An = UnEnV
ᵀ
n,

where116
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• The matrices Un,V n are orthogonal with117

(23)

{
Un ∈ R(n+1)2×(n+1)2 ,

V n ∈ RN̄×N̄ .

• The matrix En ∈ R(n+1)2×N̄ has rank rn and is in CE form as displayed in Fig. 1 (left panel).118

In particular, rank(En) = rn.119

Proof. The proof is constructive. Therefore, in the course of it, recurrence formulas emerge, which play an120

important role in the computational procedure. It allows to identify both the degree N ′ and a suitable space121

Y ′N ′ in (10). We proceed by induction on the degree n ≥ 0. First for n = 0, Y 0
0 (x) = 1/

√
4π. Therefore122

A0 = 1√
4π

[1, 1, . . . , 1] ∈ R1×N̄ . A SVD decomposition is expressed as A0 = U0S0V
ᵀ
0 with123

(24) U0 = [1], S0 = [
√
N/4π, 0, . . . , 0], V0 = [v1, v2, . . . vN̄ ]

where V0 ∈ RN̄×N̄ is orthogonal and v1 = 1√
N

[1, 1, . . . , 1]ᵀ. We set U0 = U0, V 0 = V0 and E0 = S0. Assume124

now (induction step) that the result holds for n− 1. We have An−1 = Un−1En−1V n−1 for some orthogonal125

matrices Un−1 and V n−1 and for En−1 in CE form (see Fig. 1). Consider the matrix126

(25)

[
Uᵀ
n−1 0n2,2n+1

02n+1,n2 I2n+1

]
AnV n−1 =

[
Uᵀ
n−1 0n2,2n+1

02n+1,n2 I2n+1

] [
An−1

An

]
V n−1

=

[
Uᵀ
n−1 0n2,2n+1

02n+1,n2 I2n+1

] [
Un−1En−1V

ᵀ
n−1

An

]
V n−1

=

[
En−1

AnV n−1

]
.

Using the CE form of En−1 shown in Fig. 1, we have127

(26)

[
En−1

AnV n−1

]
=

[
En−1(J1 : n2K, J1 : rn−1K) 0(J1 : n2K, Jrn−1 + 1, N̄K)
AnV n−1(J1 : N̄K, J1 : rn−1K) AnV n−1(J1 : N̄K, Jrn−1 + 1 : N̄K)

]
.

The orthogonal matrices Un, Vn and the block diagonal matrix Sn are defined by the SVD of the block in128

position (2, 2) in (26)129

(27) AnV n−1(J1 : N̄K, Jrn−1 + 1 : N̄K) = UnSnV
ᵀ
n .

We have that rankAn−1 = rankEn−1. Therefore, using (18) and (26), it turns out that130

(28) rankSn = gn.

By definition of the SVD, Un and Vn are orthogonal, whereas Sn is diagonal, with nonnegative and nonin-131

creasing values along the diagonal. This gives that (25) can be expressed as132

(29)

[
Uᵀ
n−1 0n2,2n+1

02n+1,n2 I2n+1

]
AnV n−1 =

[
En−1(J1 : n2K, J1 : rn−1K) 0(J1 : n2K, Jrn−1 + 1, N̄K)
AnV n−1(J1 : N̄K, J1 : rn−1K) UnSnV

ᵀ
n

]
.

Multiplying (29) on the left by

[
In2 0n2,2n+1

02n+1,n2 Uᵀ
n

]
, and on the right by

[
In2 0n2,2n+1

02n+1,n2 Vn

]
yields133

(30)[
Uᵀ
n−1 0n2,2n+1

02n+1,n2 Uᵀ
n

]
AnV n−1

[
Iᵀn2 0n2,2n+1

02n+1,n2 Vn

]
=

[
En−1(J1 : n2K, J1 : rn−1K) 0(J1 : n2K, Jrn−1 + 1, N̄K)

Uᵀ
nAnV n−1(J1 : n2K, J1 : rn−1K) Sn

]
︸ ︷︷ ︸

En

.

Define the matrices Un and V n in terms of the orthogonal matrices Un−1, V n−1, Un and Vn by134

(31)


Un =

[
Un−1 0n2,2n+1

02n+1,n2 Un

]
,

V n = V n−1

[
In2 0
0 Vn

]
.
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The matrices Un and V n are orthogonal and satisfy UnAnV n = En, which is equivalent to (22). Fur-135

thermore it turns out that the matrix En defined in (30) is in CE form. In fact we have rn = rankEn =136

rn−1 + rankSn. This proves that rankSn = gn and that En has the shape shown in Fig. ??. �137

As already mentioned, the steps in the proof of the Theorem 4.2 can be turned into a computational138

algorithm, with a loop over the integer n, as follows139

Algorithm 4.3. While rn < N̄ = 6N2 + 2, do for n ≥ 0,140

1. compute the matrix An;141

2. compute the matrices Un, Sn, Vn, by SVD of the matrix in (27) (24 for n = 0);142

3. assemble the matrices En, V n and Un by (30-31).143

4. compute the rank increment gn by (28), and the rank rn = rn−1 + gn.144

End While145

5. The algorithm exits exactly when rn = N̄ .146

Corollary 4.4. Let n ≥ 0.147

(i) The columns of V n(J1 : N̄K, Jrn + 1 : N̄K) are an orthonormal basis of KerAn.148

(ii) The columns of Un(J1 : N̄K, J1 : gnK) are an orthonormal basis of Ran(AnV n−1(J1 : N̄K, Jrn−1 + 1 : N̄K)).149

We consider now the functional interpretation of the algorithm (4.3). It allows to define a particular150

Spherical Harmonic subspace, which provide a suitable answer to the problem (P). First we define the151

functions uin(x) as follows.152

Definition 4.5 (Functions uin). For all 0 ≤ n ≤ N ′ and 1 ≤ i ≤ 2n+ 1, the Spherical Harmonics uin(x) ∈ Yn153

is defined from the column vectors of the matrix Un by154

(32) uin(x) := [Y mn (x)]ᵀ−n≤m≤nUn(J1 : N̄K, i).

The uin form on orthonormal family of Yn.155

Definition 4.6 (SH spaces Y ′n and Y ′n). (i) For all 0 ≤ n ≤ N ′, we call Y ′n and Y ′′n the spaces defined by156

(33) Y ′n , Span{uin, 1 ≤ i ≤ gn} ⊂ Yn, Y ′′n , Span{uin, gn + 1 ≤ i ≤ 2n+ 1}
and157

(34) Yn = Y ′n
⊥
⊕ Y ′′n .

(ii) The SH subspace Y ′N ′ is defined by158

(35) Y ′N ′ , Y ′0 ⊕ · · · ⊕ Y ′N ′ = Span{uin, 1 ≤ i ≤ gn, 0 ≤ n ≤ N ′}.

The space Y ′′n is the space of SH functions of degree n which are ”incorrectly represented” on the Cubed159

Sphere CSN . This means that their restriction to CSN coincides with the restriction of a SH function of160

smaller degree. This is expressed as follows161

Corollary 4.7 (Interpretation of the space Y ′′n ). For n ≥ 1, the SH subspace Y ′′n satisfies

Y ′′n = {f ∈ Yn : f |CSN
∈ RanAᵀ

n−1} = {f ∈ Yn : ∃g ∈ Y0 ⊕ · · · ⊕ Yn−1, f |CSN
= g|CSN

}.

Proof. Let ΠKerAn−1
, (resp. ΠRanAᵀ

n−1
) be the matrix of the orthogonal projection on KerAn−1, (resp. on162

RanAᵀ
n−1). Then the columns of V n−1(J1 : N̄K, Jrn−1 + 1 : N̄K) form an orthonormal basis of KerAn−1.163

Similarly, the columns of Un(J1 : N̄K, J1 : gnK) form an orthonormal basis of the space RanAnV n−1(J1 :164

N̄K, Jrn−1 + 1 : N̄K). Therefore, the columns of Un(J1 : N̄K, J1 : gnK) form an orthonormal basis of the space165

Ran(AnΠKerAn−1
) =

(
Ker(I−ΠRanAᵀ

n−1
)Aᵀ

n

)⊥
. This space represents the Spherical Harmonics of degree166

n with restriction to CSN are in RanAᵀ
n−1. This means that when restricted to CSN , they coincide with167

Spherical Harmonics of lower degree. �168
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Figure 1. Left panel: the VDM An is equivalent to the column echelon matrix En, whose
shape is represented on the left. Right panel: elimination of redundant lines in En results
in the lower triangular matrix Ln, displayed on the right.

Remark 4.8. In [6, p. 602], a method is considered to numerically identify the subspace KerM1 ∩ KerM2,169

where M1 and M2 are two matrices. The following SVDs are evaluated170

(36)

{
M1 = U1S1V1,

M2V1 = U2S2V2

The space KerM1∩KerM2 is deduced from the knowledge of the matrices S1, V1 and S2, V2. The factorization171

in (25) in our approach uses a similar idea. However, a first difference is that our method uses (36) iteratively172

and not just once. Second, our goal is to identify an range subspace and not a kernel. Indeed, at step n, the173

orthonormal basis Un(J1 : N̄K, J1 : gnK) of RanAnV n−1(J1 : N̄K, Jrn−1 + 1 : N̄K) is stored, since it defines the174

orthonormal basis (uin)1≤i≤gn of Y ′n ⊂ Y ′N ′ .175

4.3. Row compression. Consider again the factorization (30). It is expressed as176

(37) Uᵀ
nAn = EnV n.

We perform a row compression by eliminating redundant rows in (37). This leads to define the matrices177

Ũn ∈ R(n+1)2×rn and Ln ∈ Rrn×N̄ by178

(38)

Ũn =

U0(J1 : 1K, J1 : g0K)
. . .

Un(J1 : 2n+ 1K, J1 : gnK)

 ,

Ln =

I1(J1 : g0K, J1 : 1K)
. . .

I2n+1(J1 : gnK, J1 : 2n+ 1K)

En.

The matrix Ln in (38) is lower triangular. It contains the pivot rows of the column echelon matrix En. Doing179

so, the rows of Sk, k ≤ n, with nonzero singular values are conserved and the zero rows of Sk are eliminated.180

This is summarized in the following181
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Corollary 4.9. (i) The matrix Ũ
ᵀ
nAn admits the following LQ factorization182

(39) Ũ
ᵀ
nAn = LnV

ᵀ
n,

where the matrix Ln is lower triangular and has full row rank with rankLn = rn, and Ũ
ᵀ
nŨn = Irn .183

(ii) In particular for the degree n = N ′ in (19), we have rN ′ = N̄ and the matrix AN ′ has full column184

rank. The factorization (39) of AN ′185

(40) Ũ
ᵀ
N ′AN ′ = LN ′V

ᵀ
N ′

is such that the lower triangular matrix LN ′ ∈ RN̄×N̄ is non singular.186

The compressed factorization (40) now gives a solution to the interpolation problem (P).187

Corollary 4.10 (Solution to Problem (CS/HS)). The space Y ′N ′ is unisolvent for the Lagrange interpolation188

problem (CS/HS).189

(41) ∀y ∈ RN̄ , ∃!u ∈ Y ′N ′ , u(xj) = yj , j = 1, . . . , N̄ .

The SH function u(x) is expressed in the basis Y mn by190

(42)

{
u(x) = [Y mn (x)]ᵀ|m|≤n≤N ′ŨN′α,

α = (Lᵀ
N′)
−1Lᵀ

N′y.

The vector α is obtained by backward substitution in the upper triangular system Lᵀ
N ′α = V ᵀ

N ′y.191

Proof. Let u ∈ Y ′N ′ . There exists a unique family of N̄ reals, α = (αin)0≤n≤N ′,1≤i≤gn , such that192

(43) u(·) =
∑

0≤n≤N ′

∑
1≤i≤gn

αinu
i
n(·) = [Y mn (·)]ᵀ|m|≤n≤N ′ŨN′α.

By the Theorem 4.9, we have193

(44) [u(xj)]1≤j≤N̄ = Aᵀ
N ′ŨN ′α = V N ′L

ᵀ
N ′α,

where V N ′ is orthogonal, and LN ′ is lower triangular and nonsingular. Therefore the function u(x) is a SH194

function interpolating the data y ∈ RN̄ on CSN if and only if the vector α satifies V N ′L
ᵀ
N ′α = y, which is195

equivalent to α = (Lᵀ
N′)
−1V ᵀ

N′y. �196

5. Numerical results197

5.1. Numerical estimate of the rank increment. Let N ≥ 0 be the integer representing the accuracy198

of the Cubed Sphere CSN . The Corollary 3.3 asserts that the algorithm (4.3) necessarily exits after a finite199

number of iterations on n with exit index n = N ′, defined in (19). Regarding the rank increment gn, the200

Theorem 4.2 shows that gn = rankSn is the number of nonzero singular values of Sn, see (28). Thus gn is201

numerically estimated by some thresholding of the diagonal of Sn. This kind of thresholding is commonly202

used to numerically determine the rank of a given matrix by using the SVD . Here, we have used such a203

rank evaluation to infer the value rank(An) − rank(An−1). This value has been systematically tabulated204

with matlab. Table 1 reports the rank increment in An for N increasing from N = 1 (Cubed Sphere with 8205

nodes) to N = 6 (Cubed Sphere with 218 nodes) . This has led to the following claim.206

Claim 5.1. (1) A2N−1 has full row rank. Equivalently, r2N−1 = 4N2.207

(2) A3N has full column rank. Equivalently, r3N = N̄ .208

(3) The sequence of rank increments gn in (18) is numerically observed as given by

g0 = 1, gn =


2n+ 1, 1 ≤ n ≤ 2N − 1,

4(3N − n)− 2, 2N ≤ n ≤ 3N − 2,

3, n = 3N − 1,

1, n = 3N.

0LQ factorization is identical to QR factorization up to transposition
0this is the principle behind the method rank in matlab
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From now on, if not otherwise mentioned, the Claim 5.1 will be used to further perform numerical approx-209

imations. In particular we assume that r2N−1 = 4N2 for n = 2N − 1, and r3N = N̄ = 6N2 + 2 for n = 3N .

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
1 1 3 3 1
2 1 3 5 7 6 3 1
3 1 3 5 7 9 11 10 6 3 1
4 1 3 5 7 9 11 13 15 14 10 6 3 1
5 1 3 5 7 9 11 13 15 17 19 18 14 10 6 3 1
6 1 3 5 7 9 11 13 15 17 19 21 23 22 18 14 10 6 3 1

Table 1. Numerically evaluated rank increment gn of the VanderMonde matrix An, for
1 ≤ N ≤ 6 (row), 0 ≤ n ≤ 3N (column). The matlab routine rank has been used.

210

Some consequences of the Claim (5.1) are as follows211

(1) The smallest n ≥ 0 such that rn = N̄ is212

(45) N ′ = 3N.

(2) For every 0 ≤ n ≤ 2N − 1, Y ′n = Yn. In particular, the unisolvent space Y ′3N contains all Spherical213

Harmonics of degree n < 2N . We have Y0 ⊕ · · · ⊕ Y2N−1 ⊂ Y ′3N . We call214

(46) Y ′a = Y0 ⊕ · · · ⊕ Y2N−1.

(3) For all 2N ≤ n ≤ 3N , Y ′n ( Yn. There exists a SH of degree n, f ∈ Yn, such that f /∈ Y ′3N . We call215

(47) Y ′b = Y ′2N ⊕ · · · ⊕ Y ′3N .

In summary, assuming that the Claim 5.1 holds, the Spherical Harmonic subspace attached to the Cubed216

Sphere CSN by the analysis above is the space Y ′3N . It is decomposed as217

(48) Y ′3N = Y ′a ⊕ Y ′b.

As a corollary, we have that for all n > 3N and f ∈ Yn, there exists u ∈ Y ′3N such that f |CSN
= u|CSN

.218

Remark 5.2. A proof of Claim 5.1 is open for the moment.219

Remark 5.3. In (20), an upper bound of N ′ has been proved to be220

(49) N ′ ≤ d 7.5π
(1−ε) sep(CSN )e,

where 0 < ε < 1 is a small number. One may wonder how (49) compares to the value N ′ = 3N in (45).
The analysis in [2] has etablished that the shortest geodesic distance sep(CSN ) is realized for any short arc
around the center of any edge on the Cubed Sphere. Expressing this distance in terms of the Cubed Sphere
step angle π/2N (equatorial grid size), it turns out that

sep(CSN ) ∼
√

2

2

π

2N
.

A straightforward consequence is that the upper bound above is bounded by221

(50) 5
√

2
1−εN

′ ≈ 7.07N ′,

which is a significantly larger value than N ′.222
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5.2. Truncation analysis. Approximating functions on the sphere is commonly obtained with a truncated223

Spherical Harmonic series. A function x ∈ S2 7→ f(x) is expanded as224

(51) f(λ, θ) =

+∞∑
n=0

∑
|m|≤n

fmn Y
m
n (λ, θ)

or equivalently225

(52) f(λ, θ) =

+∞∑
|m|=0

+∞∑
n=|m|

fmn Y
m
n (λ, θ)

A first truncation scheme is the triangular scheme. It consists in defining fT ' f by the finite sum226

(53) fT (λ, θ) =

NT∑
n=0

∑
|m|≤min(n,MT )

fmn Y
m
n (λ, θ).

Here MT , NT are parameters defining the truncation.227

A second truncation is the rhomboidal scheme. We define fR ' f by228

(54) fR(λ, θ) =
∑

|m|≤MR

m+NR∑
n=m

fmn Y
m
n (λ, θ).

Both truncations are represented in Fig 2.229

−n ≤ m ≤ n
m

n

−MT MT

NT

−n ≤ m ≤ n
m

n

NR

−MR MR

Figure 2. Left panel: Triangular truncation with parameters MT and NT . Right panel:
Rhomboidal truncation with parameters MR and NR.

In [5] the two truncations are compared in the context of ocean numerical simulations in the case MT = NT230

and MR = NR.231

Here we are interested to identify which truncation is related to the approximation with the space Y ′3N232

in (48). In our case, there is no additional parameter to choose. The truncation, which necessarily occurs,233

automatically emerges from the relations (41-45).234

The approximation space Y ′3N in (48) is decomposed as235

(55) Y ′3N = Y ′a ⊕ Y ′b.
Consider a given function Y mn (x), n ≥ 0, |m| ≤ n. The truncation scheme of the space Y ′3N is evaluated236

by using the least square value237

(56) d(Y mn ,Y ′3N ) , ‖Y mn −ΠY′3NY
m
n ‖2,

where ΠY′3NY
m
n ∈ Y ′3N stands for the orthogonal projection of Y nm on Y ′3N . They are three cases238

(1) n < 2N . In this case, d(Y mn ,Y ′3N ) = 0. This means that Y nm ∈ Y ′a ⊂ Y ′3N .239

(2) n > 3N . In this case, d(Y mn ,Y ′3N ) = 1. This means that Y mn is orthogonal to Y ′3N .240

(3) 2N ≤ n ≤ 3N . This is the region where the truncation occurs. This case is analyzed below.241
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The orthogonal projector on Y ′3N , (resp. on (Y ′3N )⊥), is represented by the matrix Ũ3N Ũ
ᵀ
3N , ( resp.242

I−Ũ3N Ũ
ᵀ
3N ). We have243

(57) d(Y mn ,Y ′3N ) = min
j
‖cj(I − Ũ3N Ũ

ᵀ
3N )‖2

where cj(M) stands for the column j of the matrix M . In Table 2, the distance d(Y mn ,Y ′3N ) is reported in244

the case of the Cubed Sphere CS2, (N = 2). The results are in conformity with the case (1) above, where245

Y ′1 = ⊕n≤2N−1Yn ⊂ Y ′3N . The figures in Table 2 are reported in grayscale in Fig. 3 (top-left panel). The246

same results for N = 4, 8, 16, 32 are reported in the same fashion in the left side in Fig. 3. As can be247

observed, some rhomboidal pattern emerges for the case (3) (case 2N ≤ n ≤ 3N). Two regimes of (n,m)248

appear249

• Y mn is accurately approximated by the space Y ′3N if Mn ≤ |m| ≤ 2N , where n 7→ Mn is some250

increasing function.251

• Y mn is orthogonal to the approximation space Y ′3N for |m| > 2N . This corresponds to high values for252

n and m.253

5.3. SVD factorization of the VDM matrix AN ′ . In Section 4.1, a particular echelon form has been used
as a building block to obtain a factorization of Vandermonde matrices. One may wonder how this compares
to the more standard SVD factorization. Here we consider the alternative of using the SVD decomposition
of the full VDM matrix AN ′ in (40)

Uᵀ
SVDAN ′ = SSVDV

ᵀ
SVD.

This factor form gives that the matrix USVD ∈ R(N ′+1)2×N̄ contains an orthonormal basis of RanAN ′ . The
matrix V SVD ∈ RN̄×N̄ is orthogonal, and SSVD ∈ RN̄×N̄ is diagonal, nonsingular and has the positive
singular values of AN ′ on the diagonal. Suppose that, according to Claim 5.1, it holds that N ′ = 3N . Then,
an approximation space Y ′SVD is deduced from the columns of USVD. This space is a priori different from

the space Y ′3N in (48). The interpolating function associated to the set of data y ∈ RN̄ is uSVD(x) given by

uSVD(x) = [Y mn (x)]ᵀ|m|≤n≤3N (Aᵀ
3N )†y, with (Aᵀ

3N )† , USVDS
−1
SVDV

ᵀ
SVD.

Here, (Aᵀ
3N )† is the Moore-Penrose inverse Aᵀ

3N .254

We now comment on how the two spaces Y ′3N and Y ′SVD compare in terms of approximation power. Table255

3, is the counterpart of Table Y ′3N when replacing the space Y ′3N by the space Y ′SVD. Similarly, in Fig. 3, the256

right column is the counterpart of the left column. As can be observed, the truncation pattern is different257

for Y ′3N and Y ′SVD: when using Y ′SVD the nonzero values (56) are smaller. But the proportion of the well258

represented Spherical Harmonics is also smaller. Notice nonzero values (56) in the region N ≤ n ≤ 2N .259

Overall, the space Y ′SVD has less approximation power than Y ′3N .260

Table 4 reports a repartition analysis of the distance values (57) when using each subspace, Y ′SVD andY ′3N .261

At least 25% of the Y mn , n ≤ 3N are in the space Y ′3N . And at least 25% are almost orthogonal to Y ′3N . The262

interquartile Q3 − Q1 and the standard deviation indicate that the distances are less dispersed in the SVD263

approach. The first quartile in the SVD case is larger than the median in the echelon case. In particular264

a larger proportion of Y mn , n ≤ 3N , is accurately interpolated in Y ′3N than in Y ′SVD. Finally, the observed265

minimum value 3.8 · 10−4 for the SVD approach with N = 4 indicates that none of the Y mn belongs to266

the space Y ′SVD. Moreover, the median 1.4 · 10−3 (N = 32) shows that half of the Y mn , n ≤ 3N , are well267

represented in Y ′3N . Finally we plot the histograms of the distances for N = 32 in Fig. 4. Again, these268

histograms support the preference to the subspace Y ′3N compared to Y ′SVD. The picture is as follows. Either269

Y mn almost belongs to Y ′3N , either Y mn is almost orthogonal to Y ′3N . And more that 50% of the Y mn almost270

belong to Y ′3N , whereas less than 15% are close to Y ′SVD.271

In conclusion, the incremental approach in Algorithm 4.3 has led to associate the approximation space272

Y ′3N to the grid CSN . This space displays a rhomboidal like truncation in the range 2N ≤ n ≤ 3N . In273

terms of approximation power, this space seems more promising than the space Y ′SVD This is particularly274

true regarding the inclusion of a SH Legendre subspace as large as possible in the approximation space.275
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Figure 3. Left: distance d(Y mn ,Y ′3N ). Right: distance d(Y mn ,Y ′SVD). From top to bottom:
N = 2, 4, 8, 16 and 32.
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-6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6
0 0
1 0 4.7e-17 4.7e-17
2 0 6.2e-16 7.6e-17 2.3e-16 3.5e-16
3 2.2e-16 7.7e-17 2.2e-16 3.3e-16 3.6e-16 4.9e-16 3.2e-16
4 1 0.35 5.1e-16 0.94 4.8e-16 0.94 1.6e-15 0.35 9.3e-16
5 0.99 1 0.32 1 0.96 0.89 0.96 1 0.32 0.45 0.99
6 1 1 1 1 1 1 0.94 1 1 1 0.35 1 1

Table 2. Distance d(Y mn ,Y ′3N ) = ‖Y mn −ΠUNY
m
n ‖2, 0 ≤ n ≤ 3N , −n ≤ m ≤ n; N = 2.

-6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6
0 8.3e-16
1 9.9e-16 8.3e-16 1.2e-15
2 0.68 0.68 0.74 0.68 0.74
3 0.71 1.1e-15 0.68 0.75 0.68 0.64 0.71
4 1 0.75 0.71 0.97 0.15 0.97 0.23 0.75 0.18
5 0.71 1 0.25 1 0.69 0.59 0.69 0.77 0.25 0.3 0.71
6 0.71 0.84 1 0.84 0.73 0.79 0.59 0.79 0.9 0.84 0.22 0.84 0.76

Table 3. Distance d(Y mn ,Y ′SVD) = ‖Y mn −ΠUSVD
Y mn ‖2, 0 ≤ n ≤ 3N , −n ≤ m ≤ n; N = 2.

d(Y mn ,Y ′3N ) d(Y mn ,Y ′SVD)
N min Q1 median Q3 max mean std min Q1 median Q3 max mean std
2 0 3.5e-16 0.35 1 1 0.51 0.47 8.3e-16 0.52 0.71 0.79 1 0.62 0.3
4 0 5.9e-16 0.37 0.99 1 0.46 0.46 1.7e-15 0.52 0.69 0.73 1 0.59 0.27
8 0 8.8e-16 0.1 0.98 1 0.42 0.45 0.00038 0.48 0.68 0.71 1 0.56 0.26
16 0 1.1e-15 0.024 0.93 1 0.4 0.45 3.1e-05 0.48 0.67 0.71 1 0.54 0.26
32 0 1.4e-15 0.0014 0.91 1 0.39 0.44 2.3e-08 0.45 0.66 0.71 1 0.53 0.26

Table 4. Comparison statistics of the distances d(Y mn ,Y ′3N ) and d(Y mn ,Y ′SVD) , |m| ≤ n ≤
3N : minimum, first quartile, median, third quartile, maximum, mean and standard devia-
tion.

Figure 4. Histogram of the distances d(Y mn ,Y ′3N ) (left panel) and d(Y mn ,Y ′SVD) (right
panel), with |m| ≤ n ≤ 3N = 3 · 32.
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5.4. Interpolation test cases. We interpolate the following set of test functions on the sphere S2.

f1(x, y, z) = 1 + x+ y2 + yx2 + x4 + y5 + x2y2z2,

f2(x, y, z) = 3
4 exp

[
− (9x−2)2

4 − (9y−2)2

4 − (9z−2)2

4

]
,

+ 3
4 exp

[
− (9x+1)2

49 − 9y+1
10 − 9z+1

10

]
,

+ 1
2 exp

[
− (9x−7)2

4 − (9y−3)2

4 − (9z−5)2

4

]
,

− 1
5 exp

[
−(9x− 4)2 − (9y − 7)2 − (9z − 5)2

]
,

f3(x, y, z) = 1
9 [1 + tanh(−9x− 9y + 9z)],

f4(x, y, z) = 1
9 [1 + sign(−9x− 9y + 9z)],

The function f1 is polynomial and f1 ∈ ⊕n≤6Yn. The functions f2 and f3 are regular and they have many276

SH components in their expansion (51). The function f4 is discontinuous. In Fig. 5, the interpolation errors277

with N = 2 and N = 4 for this set of functions is displayed. Furthermore, we display in Fig. 6 the uniform278

error and the root mean squared error (RMSE) on CSN .279

(58)


e∞(N, fi) , ‖fi|CSM

− INfi|CSM
‖∞ = max

x∈CSM

|fi(x)− (INfi)(x)|,

e2(N, fi) , 1
(N̄M )1/2

‖fi|CSM
− INfi|CSN

‖2 =
(

1
N̄

∑
x∈CSN

|fi(x)− (INfi)(x)|2
)1/2

.

For N large enough, f1 ∈ Y ′3N , which gives a null error. The smooth function f2 is interpolated with an error280

decreasing with N . This is also the case for the function f3, with a decreasing rate smaller than the one for281

f2. This reflects the Cp regularity of the functions f2 and f3. Finally, as expected, the discontinuous function282

f4 is not well interpolated. The RMSE decreases very slowly, and the uniform error does not decrease.283

5.5. Poisson problem on the sphere. Let g : x ∈ S2 7→ g(x) a function defined on the sphere. We284

consider the null mean Poisson equation on the sphere in the class of regular functions (say C∞):285

(59)

 ∆u = g∫
S2
udσ = 0

on S2.

Consider the expansion (51) of g286

(60) g =
∑
n≥0

∑
|m|≤n

gn,mY
m
n .

Then, using that287

(61) ∆Y mn = −n(n+ 1)Y mn ,

the solution of (59) is288

(62) g = −
∑
n≥1

∑
|m|≤n

gn,m
n(n+ 1)

Y mn .

The null mean assumption on u gives that there is no contribution for n = 0.289

Consider the Cubed-Sphere CSN . Our numerical scheme to approximate (59) using the space Y ′3N in (48)290

is to use a spectral like approach as follows.291

(1) Define g∗, the restriction of g(x) to CSN by292

(63) g∗j = [g(xj)], j ∈ J1 : N̄K

(2) Calculate the SH function gh(x) ∈ Y ′3N defined by293

(64) gh(x) =
∑

ĝmn Y
m
n (x)

where the vector ĝ ∈ RN̄ is given by ĝ = Ũ3N (Lᵀ
3N )−1V ᵀ

3Ng|CSN
294
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Figure 5. Interpolation of test functions. Left: test functions. Middle, right: interpolation
error on CS2, CS4.

(3) Define û ∈ RN̄ by û = Λĝ where Λ is the diagonal matrix

Λ =


Λ(0)

Λ(1) (0)

(0)
. . .

Λ(3N)

 ∈ RN̄×N̄ , and Λ
(n)
i,i =

{
0 if n = 0

− 1
n(n+1) else.

− n ≤ i ≤ n
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Figure 6. Interpolation error (log 10-scale) of test functions on CSN , for 1 ≤ N ≤ 32. Any
error is evaluated on CS65. Left: uniform error; right: RMSE.

(4) Define uh(x) by295

(65) uh(x) =
∑

ûmn Y
m
n (x)

(5) Evaluate u∗h, the restriction to the CSN of uh(x).296

Selecting Λ
(0)
0,0 = 0 emplies that

∫
S2
uhdσ = 0 at the discrete level. Second, according to Corollary 4.10,297

we have uh = u in the case where g ∈ Y ′3N .298

We consider the test case in [4, 14]. Let g = ga + gb given in longitude-latitude coordinate (λ, θ) where299

(66)

{
ga(λ, θ) = −(m+ 1)(m+ 2) sin(θ) cosm(θ) cos(m(λ− dm))

gb(λ, θ) = m(m+ 1) cosm(θ) cos(m(λ− em)).

The exact solution is u = ua + ub with300

(67)

ua(λ, θ) =

{
− sin(θ) cosm(θ) cos(m(λ− dm)) if m > 0

− sin(θ)− 1 if m = 0

ub(λ, θ) = cosm(θ) cos(m(λ− em)).

In the sequel, the values em and dm are phase angles in [0, 2π] picked at random.301

The accuracy is evaluated by302

(68) E =

√√√√√√√√
∑

xj∈CSN

|uh(xj)− u(xi)|2∑
xj∈CSN

|u(xj)|2
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This evaluation is repeated for 30 values of em and dm in [0, 2π] (picked randomly). Fig 7 reports the mean303

value of log10(E) in function of m. Three Cubed Spheres are considered, CS8, CS16 and CS32. For a given

Figure 7. Poisson equation solver error on CSN for N ∈ {8, 16, 32}. The relative error is
plotted related to the value m for 30 random values em and dm in [0, 2π].

304

grid CSN , the error E increases with m, which is expected, due to the cut-off in resolution of the grid. The305

magnitude of the error E is similar to the one reported in [4] which uses a standard collocation spectral306

solver with a lon-lat grid. Here, there is no loss in accuracy, despite that the function (67) is expressed in307

lon-lat coordinates. The truncation reported in Section 5.2 is analyzed as follows. In Table 5 the error E308

is reported for m ∈ {2N − 1, 2N, 2N + 1}. Consider for example CS16. For m = 2N − 1, the error is of309

the order of 10−13. For m = 2N , the error is augmented by a factor of 105, which gives E ' 10−6. Finally,310

another augmentation by the same factor of 105 occurs again leading to E ' 10−1 for m = 2N + 1. This311

corresponds to an undersampling of the function g along the equator.

m = 2N − 1 m = 2N m = 2N + 1
N = 8 4.53× 10−9 3.25× 10−4 2.74× 10−1

N = 16 3.31× 10−13 2.96× 10−6 1.31× 10−1

N = 32 1.91× 10−12 1.33× 10−9 6.40× 10−2

Table 5. Poisson equation error on CSN for N ∈ {8, 16, 32}. The relative error E in (68)
is related to the value m. It is averaged over 30 random values em and dm in [0, 2π].

312

6. Conclusion313

In this study, a methodology to associate a Spherical Harmonics subspace to the Cubed Sphere CSN has314

been introduced. The particular subspace considered in Section 4 is based on a specific Column Echelon315
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factorisation of the Vandermonde matrix. This space seems promising in terms of approximation power. As316

seen in Section 5.2, it compares favourably to alternatives factorisations, such as the SVD.317

This work took its origin in the numerical observation of the rank increment property stated in Claim318

5.1. A proof of this claim, which is not available at time, is an objective of further studies. Applying the319

new interpolation procedure to various contexts is also an objective. First, spherical quadrature rules will320

be addressed elsewhere. Another issue is the symmetry properties of the interpolation space. In particular,321

its invariance under the action of the group of the sphere, has to be undertaken, [2]. Computational issues322

clearly require further analysis. A preliminary report is presented in Appendix A (condition number of the323

Vandermonde matrix and run time to evaluate the SH basis).324

Finally, an important goal is the application of this new framework to PDE’s in meteorology, in the spirit325

of the approach in Section 5.5.326

Appendix A. Computational issues327

We report in Table 6, some data related to the computation of the Vandermonde matrix A3N in (22) and328

of the lower triangular matrix L3N in (38). In the last line, the run time measured using a sequential matlab329

code is also reported. Small values of the condition number are observed in both cases; for example, for

Figure 8. Condition number of the matrices A3N and L3N for 1 ≤ N ≤ 32.

N 1 2 4 8 16 32
N̄ = 6N2 + 2 8 26 98 386 1538 6146

condA3N 2 2 2.1 2 2.5 6.1
condL3N 2 2.2 2.1 2.3 3 7.4

CPU time (s) 8.8e-03 1.7e-03 6.7e-03 1.1e-01 4.7e+00 3.0e+02
Table 6. Condition number of the matricesA3N and L3N . The CPU time is reported on
the third line.

330

N = 32, the number of grid points is N̄ = 6146, and condL3N = 7.4. As a result, for moderate values of N̄ ,331

we expect an accurate evaluation of the interpolating functions. By the way, the behaviors of the condition332

numbers as N grows look similar. This numerically shows that the unisolvent space Y ′3N almost captures the333

condition number of the full VDM matrix A3N .334

The reported CPU time corresponds to the computation of the matrix L3N , of the full basis Uk of Yk,335

0 ≤ k ≤ 3N , and of the orthogonal matrix V 3N . It also includes assembling the matrices Ak, k ≤ 3N . 1 For336

each value N = 1, 2, 4, 8, 16, 32, the computations are repeated five times and the reported CPU time is the337

average.338

1Matlab code on a Laptop using a CPU Intel i9-9880H@2.30 GHz.
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Appendix B. Representation of the basis functions for N = 2339

For completeness, we report the computed basis for N = 2. Fig. 9 reports the basis of the subspace Y ′6340

and Fig. 10 reports the basis of the of the orthogonal set (Y ′6)⊥. For each basis function u, the convention341

is the following: we plot u on the sphere, and we draw the CS2 mesh; then we represent six views of this342

sphere, taken in front of the six panels of the cubed sphere.343
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Figure 9. Orthonormal basis uin ∈ Y ′n ⊂ Yn, 1 ≤ i ≤ gn, 0 ≤ n ≤ 3N , of the unisolvent set
Y ′3N = ⊕0≤n≤3NY

′
n; N = 2.
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Figure 10. Orthonormal basis uin ∈ Y ′′n , gn + 1 ≤ i ≤ 2n + 1, 2N ≤ n ≤ 3N , of the
orthogonal supplementary Y⊥N = ⊕2N≤n≤3NY

′′
n ; N = 2.


