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Abstract. Spherical discrete models are of primary importance in many domains in Computational Physics.
In Grid Methods, a particular spherical grid is used in conjunction with a functional approximation procedure,
such as finite elements, finite volumes, or collocation. In the traditional pseudospectral approach, a Spherical
Harmonics subset is associated to the Longitude-Latitude grid. Here we numerically compare how Spherical
Harmonics match three standard grids, the Lon/Lat grid, the equiangular Cubed Sphere and the Icosahedral
grid. Our analysis is based on a numerical algorithm providing a specific echelon form of the associated
Vandermonde matrix of the couple (Spherical Harmonics subset) / (grid), already introduced in previous
works. Numerical results are presented, first in the context of interpolation, and second in the one of quadrature
rules. These results support that the Icosahedral grid and of the Cubed Sphere behave better than the
traditional Lon/Lat grid. The conclusion is that our interpolation approach is effective on the Icosahedral
grid and the Cubed-Sphere. However, it shows deficiencies on the Lon/Lat grid.

1. Introduction

In previous studies, numerical properties of the Cubed Sphere CSN as support of collocation of Spherical
Harmonics (hereafter called SH functions) have been reported. The associated Vandermonde matrix encodes
the basic properties of the collocation procedure of the couple CSN -nodes/SH functions. From the onset, a
suitable SH functions subspace of YD (the SH functions of maximum degree D) canonically associated to CSN

is not a priori known. In [6], a numerical approach to define such a subspace has been suggested. It is based
on a numerical algorithm performing an incremental block echelon factorization of a Vandermonde matrix.
A particular SH subspace UD emerges from this factorization, where D represents some "cut-off" degree of
SH functions supported by the CSN grid. Using this SH subspace UD on the grid CSN makes possible a
discrete harmonic calculus. This calculus has been used to perform numerical tasks such as interpolation,
approximation, PDE’s resolution and numerical quadrature.

Here, we continue this line of analysis by using our echelon algorithm for intercomparing collocation
properties of three spherical grids, the Lon/Lat grid, the Cubed Sphere and the Icosahedral grid. These
three grids are commonly used in climate simulation on the rotating earth.

The outline is as follows. Section 2 sets the notation. Section 3 presents the numerical algorithm along
the lines in [4]. In Section 4 we report elements of numerical intercomparison between the three grids above.
This covers in particular the definition of the subspace UD, condition numbers and interpolation properties.
Another outcome, already studied in the case of CSN in [5], is the accuracy of spherical quadrature rules
associated to the discrete model. The summary in Section 5 mentions some prospects.

2. Notation

The unit sphere S2 is parametrized by

x(θ, ϕ) = (cos θ cosϕ, cos θ sinϕ, sin θ) ∈ S2, θ ∈ [−π
2 ,

π
2 ], ϕ ∈ R, (1)

with θ, ϕ the latitude/longitude angles. The SH functions of degree n ≥ 0 is the vector space generated by
the functions Y m

n ,

Y m
n (x(θ, ϕ)) =

√
(n+1/2)(n−|m|)!

π(n+|m|)! P (|m|)
n (sin θ) · cos|m| θ ·


− sinmϕ, −n ≤ m < 0,
1√
2
, m = 0,

cosmϕ, 0 < m ≤ n,

(2)
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Figure 1. Three commonly used spherical grid. The resolution parameter N is ajusted in
each case to have a similar resolution. Left: the grid Lon/Lat LL10 with N̄ = 180 nodes.
Center: the Cubed Sphere CS6 with N̄ = 218 nodes. Right: the Icosahedral grid IS4 with
N̄ = 162 nodes.

where P
(|m|)
n (t) = d|m|

dt|m|Pn(t) is the |m|-th derivative of the Legendre polynomial of degree n,

Pn(t) =
1

2nn!
dn

dtn (t
2 − 1)n. (3)

The family (Y m
n )|m|≤n, n∈N is a Hilbert basis of the space L2(S2), equipped with the usual inner product and

associated norm. The SH subspace of degree n is Yn = span{Y m
n , |m| ≤ n}. It consists of the restriction to

S2 of the homogeneous harmonic polynomials of degree n (in R3). For all degree M ≥ 0, we denote

YM = Y0 ⊕ · · · ⊕ YM = span{Y m
n , |m| ≤ n, 0 ≤ n ≤ M} (4)

the space of the SH functions with degree less than or equal to M . Refer to [2, 7].

2.1. Grid definition. In the sequel, we will consider the three grids Lon/Lat, Cubed Sphere and Icosahedral.
However, our approach is a priori grid independent and can be applied to any set GN̄ = {xi, 1 ≤ i ≤ N̄} of
N̄ nodes on S2. The space of real grid functions defined on GN̄ is RGN̄ = {f : GN̄ → R}.

The three grids we consider are called LLN (longitude-latitude grid), CSN (Cubed sphere grid) and ISN

(Icosahedral grid). They all depend on a resolution parameter N ∈ N. Fig. 1 shows examples of each grid.
• Longitude/Latitude grid - LLN - We use the notation in [2]. The grid LLN is the set of N̄LLN

= 2N2

nodes with coordinates

LLN ≜

{(√
1− z2i cos

πj
N ,

√
1− z2i sin

πj
N , zi

)
, 1 ≤ i ≤ N and 1 ≤ j ≤ 2N

}
,

where zi ∈ [−1, 1] are the roots of the Legendre polynomial (3) of degree N .
• Cubed-sphere - CSN - The equiangular Cubed-Sphere is the set N̄CSN

= 6N2 + 2 nodes defined by

CSN ≜
{

1√
1+u2+v2

(±1, u, v), 1√
1+u2+v2

(u,±1, v), 1√
1+u2+v2

(u, v,±1);

u = tan iπ
2N , v = tan jπ

2N ,−N
2 ≤ i, j ≤ N

2

}
.

The nodes are symmetrically located in 6 panels mirroring the 6 faces of a cube [10].
• Icosahedral sphere - ISN -

The icosahedral grid [11] ISN is based on 12 nodes evenly distributed over the unit sphere:{
1√
1+φ2

(±φ,±1, 0), 1√
1+φ2

(±1, 0,±φ), 1√
1+φ2

(0,±φ,±1)

}
with φ =

1 +
√
5

2
.

These 12 nodes define 20 spherical triangles and 30 edges. Each triangle is then tiled with N2 smaller
triangles by inserting N − 1 uniformly spaced nodes along each edge. Then, the nodes are projected
onto the sphere. This construction is referred to as a non recursive approach (see [11,12]). The nodes
in ISN are obtained by collecting the 12 initial icosahedron vertices, the 30 × (N − 1) nodes along
each edge and the 20× (N−1)(N−2)

2 nodes in the 20 triangles. This gives N̄ISN
= 10N2 + 2.
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3. Vandermonde matrix

Suppose given a spherical grid GN̄ = {xi, 1 ≤ i ≤ N̄} and let (yj)1≤j≤N̄ ∈ RGN̄ be a grid function. We
wish to find p ∈ YD a SH function interpolating y, i.e.

p(xj) = yj 1 ≤ j ≤ N̄ . (5)

We need to determine a degree D ∈ N and a suitable subspace UD ⊂ YD, such that problem (5) has an
unique solution. For this purpose, consider the sequence of Vandermonde matrices associated to the grid GN̄

defined by

Definition 1 (sequence of Vandermonde matrices of GN̄ ). For any n ≥ 0, we call An the Vandermonde
matrix

An ≜ [Y m
k (xj)]1≤j≤N̄, |m|≤k≤n ∈ RN̄×(n+1)2 , (6)

with line index, the nodes in GN̄ and column index, the couples (k,m) sorted in lexicographical order.

The matrix An, has a block structure, where each block Ak corresponds to the SH functions (Y m
k )|m|≤k

restricted to GN̄

An =
[
A0 A1 · · · An

]
∈ RN̄×(n+1)2 , with Ak ≜ [Y m

k (xj)]1≤j≤N̄, |m|≤k ∈ RN̄×(2k+1). (7)

Once the integer D is given, calculating the polynomial p in (5) proceeds as follows:
• determine a vector [p̂mn ]|m|≤n≤D ∈ R(D+1)2 such that

AD[p̂
m
n ]|m|≤n≤D = [yj ]1≤j≤N̄ , (8)

• evaluate the polynomial p(x) ≜
∑

|m|≤n≤D

p̂mn Y m
n (x) in matrix-vector form by

p(x) = [Y m
n (x)]⊺|m|≤n≤D[p̂

m
n ]|m|≤n≤D. (9)

3.1. Theoretical approach to the SH subspace UD. Here we define a subspace of SH functions UD

ensuring existence and uniqueness in (5). We begin with the following lemma which is a direct consequence
of [8, Lemma 3.13]. It states that the interpolation problem (5) has at least a solution provided that the
integer D is selected large enough.

Lemma 2. Define the separation distance sep(GN̄ ) = min
i ̸=j

arccos(x⊺jxi), the minimal distance between two

distinct nodes of GN̄ . Let q > 0 and D ∈ N satisfying

0 < q < sep(GN̄ ), D ≥ 7.5π

q
.

Then the matrix AD has a full row rank. In other words, any grid function f ∈ RGN̄ can be interpolated by
at least one SH function u ∈ YD.

Existence in problem (5) is thus guaranteed for all D >

⌊
7.5π

q

⌋
. Next, we proceed by induction on the

degree n to define a SH functions set ensuring in addition uniqueness in (5) [4–6]. This is summarized in the
following theorem.

Theorem 3 (Interpolation space). Consider the subspace Wn of the SH functions of degree n, inductively
defined by

W0 ≜ {0}, Wn ≜ {w ∈ Yn : ∃v ∈ Y0 ⊕ · · · ⊕ Yn−1, w|GN̄
= v|GN̄

}, n ≥ 1, (10)
and consider the decomposition

Yn = Wn

⊥
⊕W⊥

n , n ≥ 0. (11)
Let T denote the restriction operator on GN̄ ,

T : C 0(S2) −→ RGN̄

u 7−→ T (u) ≜ u|GN̄

. (12)

Then there exists a smallest degree D = D(GN̄ ) ≥ 0 such that the linear map TD ≜ T |W⊥
0 ⊕···⊕W⊥

D
is isomor-

phic. The interpolation space is then defined as

UD ≜ W⊥
0 ⊕ · · · ⊕W⊥

D . (13)

The inverse of TD is called the interpolation operator and is denoted by IN̄ : RGN̄ → UD.



4 JEAN-BAPTISTE BELLET†, MATTHIEU BRACHET†, AND JEAN-PIERRE CROISILLE‡

Proof. First, we prove by induction on the degree n ≥ 0, that

T (Y0 ⊕ · · · ⊕ Yn) = T (W⊥
0 ⊕ · · · ⊕W⊥

n ). (14)

For n = 0, this is due to Y0 = W⊥
0 . Fix now n ≥ 1 such that (14) holds for the degree n− 1 (induction). By

definition of Wn, Yn = Wn ⊕W⊥
n , with T (Wn) ⊂ T (Y0 ⊕ · · · ⊕ Yn−1). Therefore

T (Y0 ⊕ · · · ⊕ Yn) = T (Y0 ⊕ · · · ⊕ Yn−1 ⊕W⊥
n ) = T (W⊥

0 ⊕ · · · ⊕W⊥
n ),

which achieves the induction.
Second, fix D =

⌊
7.5π

q

⌋
+ 1 where sep(GN̄ ) > q > 0 . Lemma 2 shows that the linear map T |Y0⊕···⊕YD

is

surjective; hence, (14) with n = D implies that the restriction TD is surjective as well.
To conclude, we prove that TD is also injective. Assume that there is w ∈ W⊥

0 ⊕ · · · ⊕W⊥
D \ {0} such that

Tw = 0. Let n ≤ D be the degree of w. The unique constant function u ∈ Y0 such that u|GN̄
= 0 is the zero

function, therefore n ≥ 1. Then, there exist wn ∈ W⊥
n \ {0} and y ∈ Y0 ⊕ · · · ⊕Yn−1 such that w = wn − y.

Since Tu = 0, wn|GN̄
= y|GN̄

, so wn ∈ Wn, which is a contradiction. □

The subspace Wn represents the SH functions of degree n which are undersampled on GN̄ . This means
that they coincide on CSN with a SH function of smaller degree. On the other hand, all the SH functions
in W⊥

n are properly sampled on GN̄ , since they can be reconstructed by interpolation. Consequently, the SH
subspace UD is intrinsically defined by (13). At this stage, there is no analytical description of UD, nor of
Wn, W⊥

n : their definitions are purely theoretical.
By construction of the space UD in (13) and of the interpolation operator IN̄ in (12), the Lagrange

interpolation problem on GN̄ has a unique solution in UD. Furthermore, for every f ∈ RGN̄ , IN̄f ∈ UD

denotes the unique element p ∈ UD such that p|GN̄
= f . The following result states that the degree of IN̄f

is actually minimal.

Corollary 4 (Minimal degree). Let f ∈ RGN̄ be a grid function interpolated by IN̄f ∈ UD. Let u ∈
Y0 ⊕ · · · ⊕ YD̃ be a SH function of degree D̃ interpolating f , i.e. u|GN̄

= f . Then D̃ ≥ deg(IN̄f).

Proof. If D̃ > D, the result is obvious. If D̃ ≤ D, f = Tu ∈ T (Y0 ⊕ · · · ⊕ YD̃). By (14) there exists a
v ∈ W⊥

0 ⊕ · · · ⊕W⊥
D̃

such that f = Tv with D̃ ≤ D. Hence, v ∈ UD, which implies v = IN̄f . Therefore,

deg(IN̄f) = deg(v) ≤ D̃. (15)

□

Remark 5. The approximation power of UD is estimated by the distance dist(Y m
n ,UD) of a given SH function

Y m
n to UD. It turns out that on the one hand, for n > D, we have Yn ⊥ UD so that dist(Y m

n ,UD) = 1.
On the other hand, for n small enough, Yn ⊂ UD, so that dist(Y m

n ,UD) = 0. In this case, Y m
n is exactly

recovered by interpolation in UD. In Section 4, the distance dist(Y m
n ,UD) with |m| ≤ n ≤ D is numerically

evaluated.

3.2. Echelon factorization algorithm. In [6], a factorization of the Vandermonde matrix (7) has been
introduced in the case of the Cubed Sphere CSN . This factorization is obtained as the final stage of an
incremental algorithm of special echelon kind. Here we show that this algorithm can be used in the case of
a general grid.

Theorem 6 (Special echelon orthogonal factorization [4, 6]). Let GN̄ be a spherical grid and n ≥ 0. The
Vandermonde matrix An ∈ RN̄×(n+1)2 in (7) can be factorized in special echelon form as

An = VnEnU
⊺
n, (16)

where
• the matrix Vn ∈ RN̄×N̄ is orthogonal,

• the matrix Un =


U0 0 · · · 0

0 U1
. . .

...
...

. . . . . . 0
0 · · · 0 Un

 is block diagonal and for 1 ≤ k ≤ n, Uk ∈ R(2k+1)×(2k+1) is

orthogonal,
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• the matrix En =


Λ0 ∗ · · · ∗

0 Λ1
. . .

...
...

. . . . . . ∗
0 · · · 0 Λn

0 · · · · · · 0

 ∈ RN̄×(n+1)2 is in echelon form, with Λk the block matrix

Λk =


dk1 0 · · · 0

0 dk2
. . .

...
...

. . . . . . 0
0 · · · 0 dkgk

0gk,2k+1−gk

 (17)

for some gk ≥ 0 and with dk1 ≥ dk2 · · · ≥ dkgk > 0.

The proof is similar to the one in [6, Theorem 7] and it is not reproduced here. It proceeds by induction
on the degree n. The factorization (16) is the matrix representation of the decomposition (11). The matrix
Un encodes orthonormal bases of the spaces W⊥

k and Wk, 0 ≤ k ≤ n as described in the following definition.

Definition 7 (Basis functions of the SH function spaces Wk and W⊥
k in (11)). Let n ≥ 0, and consider the

special echelon form (16) of An. Then
• For all 0 ≤ k ≤ n and 1 ≤ i ≤ 2k + 1, the set of functions uik(x) ∈ Yk defined by

uik ∈ Yk, uik(x) = [Y m
k (x)]⊺|m|≤kUk(:, i), x ∈ S2, (18)

forms a basis of Yk.
• the set {uik, 1 ≤ i ≤ gk} forms an orthonormal basis of the space W⊥

k .
• the set {uik, gk + 1 ≤ i ≤ 2k + 1} forms an orthonormal basis of the undersampled space Wk.

Next, consider the submatrix Ũn of Un

Ũn =

U0(1 : 1, 1 : g0)
. . .

Un(1 : 2n+ 1, 1 : gn)

 ∈ R(n+1)2×rank(An). (19)

The matrix AnŨn represents the operator T |W⊥
0 ⊕···⊕W⊥

n
in the basis {uik, 1 ≤ i ≤ gk, 0 ≤ k ≤ n} with full

column rank rn = g0 + · · ·+ gn. It has the QR factorization

AnŨn = VnẼn, (20)

where Ẽn is an upper triangular matrix with full column rank deduced from En. The QR factorization (20)
with n = D is

ADŨD = VDẼD. (21)
The relation (21) provides an orthonormal basis {uik, 1 ≤ i ≤ gk, 0 ≤ k ≤ D} of the space UD, and a QR
form of the operator TD : UD → RGN̄ , where VD is orthogonal, and the upper triangular matrix ẼD ∈ RN̄×N̄

is non-singular. It results from Theorem 3 that ADŨD is non-singular, and that the row rank of AnŨn is
deficient if n < D (i.e. rn < N̄). This suggests to compute incrementally the factorization (16), for increasing
values of n, until the value of rn = g0 + · · ·+ gn reaches the size of the grid N̄ . This is implemented in the
Algorithm 1. The numerical resolution of the problem (5) is given by

Corollary 8 (solution of the interpolation problem (5)). Assume that the factorization (21) has been pre-
computed. Let f ∈ RGN̄ be a grid function. Then, the unique element u ∈ UD such that u(xj) = f(xj), 1 ≤
j ≤ N̄ , is given by

IN̄ [f ](x) = [Y m
n (x)]⊺|m|≤n≤D[p̂

m
n ]|m|≤n≤D, with [p̂mn ]|m|≤n≤D = ŨD(ẼD)

−1V⊺
D [f(xj)]1≤j≤N̄ .

The vector α ≜ (ẼD)
−1V⊺

D [f(xj)]1≤j≤N̄ is obtained by backward substitution in the upper triangular system

ẼD α = V⊺
D [f(xj)]1≤j≤N̄ .

Proof. The matrix of IN̄ = T−1
D is given by (ADŨD)

−1 = (ẼD)
−1V⊺

D, due to (21). □
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Algorithm 1 Incremental special echelon orthogonal factorization of Vandermonde matrices

Require: Set of N̄ nodes on the sphere: GN̄ .
Initialization. For n = 0, compute the factorization A0 = V0E0U

⊺
0:

1. compute the matrix A0 in (7);
2. compute the matrices V0, E0 and U0 by SVD of A0;
3. evaluate the number of nonzero diagonal coefficients in E0, r0 = g0.

Iterations For n ≥ 1, compute the factorization An = VnEnU
⊺
n:

1. compute the matrix An in (7);

2. compute matrices Vn,
[
Λn

0

]
and Un by SVD :

Vn−1(:, rn−1 + 1 : N̄)
⊺
An = Vn

[
Λn

0

]
U

⊺

n .

3. assemble the matrices Vn, En and Un defined by

Vn = Vn−1

[
Irn−1 0
0 Vn

]
Un =

[
Un−1 0
0 Un

]

En =

En−1(1 : rn−1, :) Vn−1(:, 1 : 1 : rn−1)
⊺AnUn

0 Λn

0 0

 ;

4. evaluate the number gn of nonzero diagonal coefficients in
[
Λn

0

]
, and evaluate the rank of An with

rn = rn−1 + gn.
Stopping criterion. Exit when rn = N̄ .
Output :

• Smallest degree D such that the Vandermonde matrix AD in (6) has full row rank
• Associated echelon factorization (16): AD = VDEDU

⊺
D.

4. Numerical results

4.1. Echelon factorization accuracy. In Theorem 3, the integer D has been defined as the maximum
degree such that the space UD is properly represented by the grid GN̄ . The factorization (16) and the QR
factorization (21) depend on D (Algorithm 1) and are defined in exact arithmetic. In inexact arithmetic,

the dimensions gn in (17) are evaluated using a thresholding τ on the coefficients of ∆n =

[
Λn

0

]
, with Λn

the positive diagonal matrix defined in Theorem 6. For a given value of the threshold τ > 0, we let ∆n = 0

if [∆n]1,1 ≤ τ ; otherwise, for all i ≥ 1 such that [∆n]i,i
[∆n]1,1

≤ τ , we let [∆n]i,i = 0. With this convention, the
computed factorization is inexact and both the computed degree D and the computed space UD depend
on the selected threshold τ . For each grid LLN , CSN and ISN , we investigate how the threshold level τ
influences the degree D, the accuracy of the factorization (20) and the condition number of the matrices AD

and ẼD.

4.1.1. Degree D of the subspace UD in (13). Fig. 2, top line, reports the degree D corresponding to the
interpolation space UD when picking the threshold τ = τ1 = 10−4, τ = τ2 = 10−2 and τ = τ3 = 10−1,
respectively. Note that τ ′ ≥ τ ′′ leads to D(τ ′) ≥ D(τ ′′). Fig. 2, bottom line, shows that

• the Lon/Lat grid LLN requires SH functions of higher degree D;
• the grids CSN and ISN require almost identical values of D (slightly lower for ISN ).

For a given grid GN̄ and a fixed n, the larger is the space Wn in (11), the smaller is the space W⊥
n and

therefore the smaller is D. This leads to assert that a lower value of D is associated with a more accurate
representation of low-degree SH functions on GN̄ . From the 3 top panels in Fig. 2, it results that for a fixed
threshold τ , the grids CSN and ISN provide a better representation of low-degree SH functions than LLN .
In addition, a smaller threshold τ is associated with a larger maximum degree D. Therefore the threshold τ
should be picked as not too small.
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Figure 2. Plots of the degree D of the interpolation space UD (see (13)) with the three grids
LLN , CSN and ISN and for the three threshold values τ1 = 10−4, τ2 = 10−2 and τ3 = 10−1.
The 3 top panels show N̄ 7→ D for the grid LLN , CSN and ISN , (left to right), comparing in
each plot the 3 threshold values τ = τ1, τ = τ2 and τ = τ3. For each grid, the larger is τ , the
larger is D. The 3 bottom panels show N̄ 7→ D for τ = τ1, τ = τ2 and τ = τ3 (left to right),
comparing in each plot the 3 grids LLN , CSN and ISN . This shows DLLN

> DCSN
> DISN

.
A smaller D means better approximation properties of the grid.

4.1.2. Accuracy in the factorization (20). We comment on the accuracy of the factorisation (20) with the
three threshold values τ1 = 10−4, τ2 = 10−2 and τ3 = 10−4, the three grids LLN , CSN and ISN and for
various grid sizes N̄ . Fig. 3 reports the relative error

N̄ 7→ ∥ADŨD −VẼD∥2
∥ADŨD∥2

, (22)

(see Theorem 6 and Corollary 8 for the notation). In almost all cases, the error is close to 10−14 regardless
of the grid and of the threshold level τ . For the grid CSN with N̄ ≳ 103, (22) reaches the highest obtained
error level (≃ 10−11). Overall, Algorithm 1 gives accurate results in the tested cases. Note that the slightly
higher error for the finest grids CSN .

4.1.3. Condition numbers cond(AD) and cond(ẼD). The matrix AD represents how the grid GN̄ interpolates
the full subspace YD. Therefore, on the one hand, the condition number cond(AD) gives an indication on
the accuracy and stability of the problem (8). On the other hand, the matrix ADŨD corresponds to
the interpolation operator in the subspace UD. Since the matrix VD is orthogonal the accuracy of the
interpolation operator is related to cond(ẼD). We report the accuracy numerical in Table 1 and Fig. 4.
Table 1 reports the smallest N̄ such that cond(AD) > 103 (for each grid and for τ1, τ2 and τ3). In all cases,
one observes that

cond(AD)ISN
< cond(AD)CSN

< cond(AD)LLN
(23)

Fig. 4 reports N̄ 7→ cond(AD) and N̄ 7→ cond(ẼD) for the three grids and threshold values τ1 = 10−4,
τ2 = 10−2 and τ3 = 10−1. In all cases, we observe that cond(AD) ≤ cond(ẼD). Selecting the space UD in
YD increases the condition number: it is a price to pay to have an isomorphism in the resolution of (8). In
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Figure 3. Plots of the factorization error (22) with the three grids LLN , CSN and ISN

and for the three threshold values τ = τ1 = 10−4, τ = τ2 = 10−2 and τ = τ3 = 10−1. The
3 top panels show the function (22). Each color corresponds to a threshold τ ∈ {τ1, τ2, τ3}.
The magnitude of the error is about 10−14 except for CSN , where it can reach 10−11. The
3 bottom panels show N̄ 7→ (22) for τ = τ1, τ = τ2 and τ = τ3 (left to right), comparing in
each plot the 3 grids LLN , CSN and ISN .

LLN CSN ISN

τ = τ1 = 10−4 128 386 2892
τ = τ2 = 10−2 128 > 6000 > 6000
τ = τ3 = 10−1 1152 > 6000 > 6000

Table 1. Minimal number of nodes N̄ for which cond(AD) > 103 for the grids LLN , CSN

and ISN and for τ ∈ {τ1, τ2, τ3}. (A large value means accurate results). The number of
nodes N̄ is the largest for the grid ISN and the smallest for the grid LLN .

addition, the smaller is the threshold τ , the larger is the degree D and the larger is the condition number of
the matrices AD and ẼD. Our experience shows that a threshold value τ = τ2 = 10−2 is suitable in most of
the cases. This value is adopted in Section 4.3 (interpolation) and 4.4 (quadrature).

4.2. Subspace UD. Consider the expansion of f ∈ L2(S) into a series of SH functions. At the discrete level,
this expansion translates to the decomposition of T (f) ∈ RG

N̄
onto the basis (uik)1≤i≤gk,0≤k≤D. Consider a

SH function Y m
n (with 0 ≤ |m| ≤ n). The ability of the grid GN̄ to sample Y m

n is measured with the distance
dist(Y m

n ,UD) = inf
u∈UD

∥Y m
n − u∥L2(S2). One has dist(Y m

n ,UD) = 0 (resp. 1) if Y m
n ∈ UD (resp. Y m

n ⊥ UD).

The matrix ŨDŨ
⊺
D represents the orthogonal projection onto UD. Therefore, for 0 ≤ |m| ≤ n ≤ D,[

dist(Y m
n ,UD)

]
0≤|m|≤n≤D

=
[∥∥∥cj (I− ŨDŨ

⊺
D

)∥∥∥
2

]
1≤j≤(D+1)2

(24)

where cj(M) stands for the j- th column of the matrix M . Displaying the matrix (24) is a convenient way
to represent the subspace UD. An example is given in Fig. 5, which represents (24) for the grids LL55,
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Figure 4. Plots of the Condition numbers cond(AD) and cond(ED) with with the three
grids LLN , CSN and ISN and for the three threshold values τ = τ1 = 10−4, τ = τ2 = 10−2

and τ = τ3 = 10−1. The 3 top panels show N̄ 7→ cond(AD) and N̄ 7→ cond(ED) for the grid
LLN , CSN and ISN , (left to right), comparing in each plot the 3 threshold values τ = τ1,
τ = τ2 and τ = τ3. The 3 bottom panels show N̄ 7→ cond(AD) and N̄ 7→ cond(ED) for τ = τ1,
τ = τ2 and τ = τ3 (left to right), comparing in each plot the 3 grids LLN , CSN and ISN .
The grid LLN is associated to the larger condition numbers. The grid ISN is associated to
the smaller ones. The grid CSN is intermediate. In each case, cond(AD) ≤ cond(ẼD).

CS32 and IS25. Each grid contains approximately 6200 nodes. Blue symbols correspond to a 0-distance
(up to computer accuracy). In each case, a value d such that Yd ⊂ UD is indicated by a red line. Similar
plots are shown for the following grid parameters: N ∈ [[1; 30]] (for LLN ), N ∈ [[1; 32]] (for CSN ) and
N ∈ [[1; 25]] (for ISN ). Calling dmax the maximum degree such that Yd ⊂ UD, it turns out from Table 2 that
dmax(LLN ) < dmax(CSN ) < dmax(ISN ). This means that for a fixed number of nodes N̄ , the Icosahedral
grid correctly represents a larger space Yd than the grids LLN and CSN .
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Figure 5. Distance dist(Y ∗
n ,UD) in (24) using log scale, for the grids LL55, CS32 and IS25.

The better results are obtained for the Icosahedral grid.

Grid d such that Yd ⊂ UD

LLN N − 1 ≈ 0.71
√
N̄

CSN 2N − 1 ≈ 0.82
√
N̄

ISN 3N − 1 ≈ 0.95
√
N̄

Table 2. Approximate degree d such that Yd ⊂ UD for the grids LLN , CSN and ISN . The
function N̄ 7→ d grows at the fastest rate with ISN and at the smallest with LLN . The rate
is intermediate with CSN .

Figure 6. Functions fi (1 ≤ i ≤ 4). The function f1, f2 and f3 are regular with f1 polyno-
mial. The function f4 is discontinuous.

4.3. Interpolation accuracy. Here we interpolate the 4 functions f1, f2, f3 and f4 defined on S2 with the
space UD defined in (13). The threshold τ in Sec. 4 is picked as τ = τ2 = 10−2.

f1(x, y, z) =1 + x+ y2 + yx2 + x4 + y5 + x2y2z2 (25)

f2(x, y, z) =
3
4 exp

(
− (9x−2)2

4 − (9y−2)2

4 − (9z−2)2

4

)
+ 3

4 exp
(
− (9x+1)2

49 − 9y+1
10 − 9z+1

10

)
+ 1

2 exp
(
− (9x−7)2

4 − (9y−3)2

4 − (9z−5)2

4

)
− 1

5 exp
(
−(9x− 4)2 − (9y − 7)2 − (9z − 5)2

)
(26)

f3(x, y, z) =
1

9
(1 + tanh(−9x− 9y + 9z)) (27)

f4(x, y, z) =
1

2

(
1 + sign

(
x− 1

2

))
(28)

Since f1 ∈ Y6 ⊂ UD, it is expected that IN̄f1 = f1 for all grids. The functions f2 and f3 are regular but with
an infinite SH expansion, thus an error is expected. The function f4 [5] is discontinuous, with an infinite SH
expansion as well. Fig. 6 displays the levels of the functions fi (1 ≤ i ≤ 4). Note that the interpolate IN̄f4
displays oscillations on a fine grid, similar to the "Runge phenomenon". Fig. 7 reports the relative error

N̄ 7→ ∥IN̄fi − fi∥∞
∥fi∥∞

(29)
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Figure 7. Plots of the relative error (29) for the functions fi, i = 1, 2, 3, 4. Convergence is
observed for N̄ large for the regular functions f1, f2 and f3 for CSN and ISN but not for
LLN .

with ∥u∥∞ = max
xj∈LL100

|u(xj)|.

4.4. Quadrature. In [5, Theorem 8], a quadrature rule using the nodes of the Cubed-Sphere CSN as quad-
rature nodes has been considered. Here, the same method is extended to the grids LLN and ISN . Let
u : S2 → R be a given function. Define

QN̄u ≜
∫
S2
IN̄ [u|GN̄

](x)dσ. (30)

Since the set of function (Y m
n )0≤|m|≤n is an orthonormal basis of L2(S2) we have∫

S2
Y m
n (x)dσ =

〈
Y m
n , Y 0

0

〉
L2(S2) =

{ √
2π if m = n = 0
0 else. (31)

For this reason QN̄u is proportional to the first coefficient of the SH decomposition and

QN̄u =
N̄∑
j=1

ωju(xj) (32)

with [ωj ]1≤j≤N̄ = (ṼDẼ
−⊺

D U
⊺

D)
[√

4π 0 · · · 0
]⊺

. Here again, the threshold τ is selected as τ = τ2 = 10−2.
With this choice, the weights [ωj ]1≤j≤N̄ have been observed positive for CSN (1 ≤ N ≤ 32) and ISN

(1 ≤ N ≤ 25). (There is no proof of this statement at the moment). However, with LLN (N ≥ 25), some
weights are observed negatives.

The quadrature formula QN̄ is tested against the series of functions in Table 3. In Fig. 8, we report the
worst relative error ε(fi) among 1000 random rotations of the grid. For a given function fi, the relative error
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Function fi

∫
S2
fi(x)dσ References

f1 216π/15 [3]
f2 6.6961822200736179523 · · · [1, 9]
f3 4π/9 [3]
f4 π [5]

Table 3. Exact mean value for the 4 functions fi, i = 1, 2, 3, 4.
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Figure 8. Plots of the relative quadrature errors (31) for the 3 grids LLN , CSN and ISN

in function of the number of nodes N̄ for the functions fi, i = 1, 2, 3, 4. The worst error
is retained among 1000 random orthogonal transformations of the grid. For each grid, the
quadrature rules converge to the exact value when N̄ increases. The grids CSN and ISN give
the best results.

is given by

ε(fi) : N̄ 7→

∣∣∣∣QN̄fi −
∫

fi(x)dσ

∣∣∣∣∣∣∣∣∫ fi(x)dσ

∣∣∣∣ .

The fact that f1 ∈ Y6 is a polynomial function implies an exact quadrature is exact assuming a large
enough number of grid nodes and a suitable condition number. Moreover, since the function f2 is regular,
the convergence is obtained for all quadrature rules. The function f3 is smooth but divides the sphere in two
with a sharp interface. However, all the quadrature rules provide accurate results. Instabilities are visible on
the finest grids, particularly for the grid LLN̄ . This can be related to the condition number cond(ẼD). Even
so, the error level is < 10−10. The function f4 is not regular. For this reason, it is certainly the most difficult
to integrate on the sphere. The quadrature rules we have developed for CSN̄ and ISN̄ give results similar
to those of Lebedev’s formula. Unfortunately, the weights related to the grid LLN̄ do not give good results
and seem to suffer from numerical instabilities on the finest grids. By analysing the weights, it appears some
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values (ωj)1≤j≤N̄ are negative and with a large amplitude close to the poles. Once again, this behaviour can
be related to cond(ẼD).

5. Summary

We have considered interpolation and quadrature based on data located on a spherical grid GN̄ ⊂ S2. A
specific subspace of SH fuctions associated to the grid by the algorithm 1 is introduced for that purpose.
Our numerical computations are based on the special echelon factorization of the associated Vandermonde
matrix. This factorization is implemented with an incremental algorithm already devised in [4–6] in the case
of the Cubed Sphere. The procedure depends on the thresholding parameter τ in Sec. , which determines
the effective value of the matrix rank at each step. Selecting this threshold value τ therefore plays a crucial
role. A series of numerical experiments have been presented on the three grids Lon/Lat, Cubed-Sphere and
Icosahedral. The effect of the parameter τ is analyzed as well as the shape of the interpolation SH functions
space UD. The grid CSN and ISN give comparable results, both superior to the ones obtained with the
grid LLN . This does not discard the interest of the Lon/Lat grid. It simply means that our interpolation
procedure is not adapated to the grid LLN .
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