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Equiangular Cubed Sphere
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Figure: The equiangular Cubed Sphere.
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Equiangular Cubed Sphere (cont.)
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Grid points located at the intersection of two series of great circles.
The integer N is the measure of the spatial accuracy.

Circles in vertical position are C,-(l), —N/2<i<N/j2.

Circles in horizontal position are labeled Cj(2), —N/2<j<N/2.
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Figure: The 6 panels on the Cubed Sphere grid with resolution N = 16 (167

cells by panel). 671
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Discrete derivative
Calculate Hermitian derivatives along coordinate great
circles on the Cubed Sphere:

» "horizontal” coordinate &

» "vertical” coordinate 7.

Exemple: fourth order discrete derivative formula

uy j =~ u'(x;) is defined by

%”x,j*l + % xj T % i jHl = % (1)
or equivalently
wes = [0+ )0y @
Truncation error: 1
b = ' (3) = 75508 ulx)h* + O(H°) 3)
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Data along a great circle

Interpolation line

Interpolation node

The Hermitian discrete derivative is applied to the data located at
the nodes in blue.
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Discrete gradient at the nodes of the CS

» Continuous gradient V r(x)u on panels FRONT and BACK is
expressed as

ou ou
Vru(x) = a—g(X)mgf(X) + 3—77(X)|gg”(X) (4)
P A discrete analog is
V1 hujj= Ug i g5 + Un,i j gl (5
=~ —~—
£ —Hermitian deriv. n—Hermitian deriv.
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Discrete divergence and curl

> Divergence

9] 0
o Vyu=4 gg A g AVra-u=uc-gf+uy, g

9 |y, e
» Curl
O 0
° eru:gfx—u -|—g"><—u zVT,Axu:ggxug—i—g"xun
9%, ¢

where (g&, g") is the dual basis at (¢;,7;) and hg, hy, ug and u, are the
Hermitian derivatives at points (&;,7;).

» All formulas are "compact” centered but the resulting approximation is " non
local”.
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Vector form of the spherical SW equations

oh*

ot
ov 1 5 B
E-I-VT (§|v| +gh)+(f+§)n><v—0

+Vr- (h*v) =0
(6)

h is the fluid thickness and v the tangential velocity,
h* = h — hs with hs the bottom topography,

>

>

» n is the normal exterior vector,
» (= (V71 xv)-nis the vorticity,
>

f is the Coriolis parameter (depends on the latitude).
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Cubed Sphere finite difference solver

|

Method of lines with:

1. In space: center scheme of order 4 based on great circles.
2. In time: RK4 or Rosenbrock/exponential with a minimally
diffusive space filtering (10th order).

Numerical solutions of SW after long physical physical time. Short
time: 1-10 days, Medium time: 50-100 days, Long time: 500-1000
days.

Results favourably compare to high order conservative solvers (e.g.
FV, DG, SE,...) on many standard test cases.

Few mathematical results available yet ! Conservation, convergence
analysis, etc.
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Time approximation and filtering

<Q(1) = F(t, Q1) ™)

is typically approximated by the RK4 time scheme. Let F be a
spatial filter function.
Runge-Kutta order 4 + Spatial filtering

1. K1 = F(t",Q"),

2. Ko = F(t"+ &5 Q"+ K1),

3. K3 = F(t"+ 55, Q"+ 5t Ky),

4. Ky = F(t" + At, Q" + AtK3)

5. QM = Q" + &t (K1 + 2Ky + 2Kz + Ka)

6. Q"1 = F(Q"t1) (filtering step).
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Conservation properties

» Physical conservation properties are a poseriori evaluated.

> Ansatz: "high order scheme + (3 )high order quadrature rule = many conserved
quantities at the continuous level are well preserved up to a certain grid error”.

Time invariant averaged quantities

For (h,v) a solution of the SW equations, the following quantities are conserved :

> mass : [, h(t,x)do(x)
o2 2y Ly
> energy : [o 7g(h — h2) + 7h|v| do(x)

2

> potential enstrophy : fSZ

Quadrature over the Cubed Sphere

Discrete quadrature formula :

vy N2

/(f)—aAgAnZ Z \/G fj K

k=(1) i,j==—N/2

(®)
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Compact schemes in Computational Fluid Dynamics

The scheme is the analog of compact schemes for wave problems
in aeroacoustics or LES simulation.

» Cartesian grids
» High order accuracy

» Fully centered schemes: no upwinding
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Linearized Shallow Water Equations (LSWE) (at the rest
state)

Ov(x,t) +gVrn+fk xv=>Sy
Om(x,t) + Hdivrv =5, 9)
V(X,O) = VO(X)7 n(xao) = WO(X)

e g = gravity acceleration,

e H = mean thickness of the atmosphere, (10)
o f = Coriolis force

The LSWE in climatology

» This is the reference model for linear waves in many settings: 5— plane,
various "chanel” assumptions, full sphere,...

» N. Paldor: Shallow Water Waves on the Rotating Earth, SpringerBriefs in
Earth System Sciences, 2015
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Shamir-Paldor et al. test cases for the SW equation
» The full spherical LSWE is expressed as

dea(t,x) = Aq (1)

» "Zonal" traveling wave solution
a(t, x) = (o) exp(ik( — Ct)) (12)
> g(0) deduced from () from a second order equation (Schrédinger 1D)
P"(0) + Fak,c(0)¥(0) =0 (13)

with a = gH/(2Qa)? and with B.C. ) =0 at 6 = £n/2.
> The constant o determines the thickness of the atmosphere ("thick” or "thin").

> Eigensolutions are identified as

»> EIG or WIG mode (eastward or westward inertial-gravity) mode
» Rossby mode

A quasi-analytic series of approximate solutions is derived in explicit form. To
be compared with the ones obtained by a nonlinear solver.
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A summary of the test cases

ol

Test-1a: " barotropic EIG”
Test-1b: "barotropic Rossby”
Test-2a: "baroclinic EIG”
Test-2b: "baroclinic Rossby”

O. Shamir and N. Paldor, A quantitative test case for global-scale dynamical
cores based on analytic wave solutions of the shallow-water equations, Quart.
Jour. Roy. Met. Soc., 142, 2016, 2705-2714.

O. Shamir, |. Yacoby, S.Z. Ziv and N. Paldor, The Matsuno baroclinic wave test
case, Geo. Model. Dev., 12, 2019, 2181-2193.

18/71



Institut

ESI workshop, Waves motion at the planetary scale, Vienna, May 23 2023
|—Compact schemes on the Cubed Sphere @ Hglggﬂ\{& 'FMCARTAN

Barotropic EIG wave

Relative error

time (days)

Figure: Test 1-a (barotropic EIG wave). The final time is t = 13.5 days
(100 periods). Left: total height at final time. Right : History of relative
errors. Exponential ERK2 time scheme, CFL = 4. Resolution

6 x 64 x 64.
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Barotropic EIG wave, (cont.)

maximum of b
000 minimum of

Figure: Test 1-a (barotropic EIG wave). Final time is t = 13.5 days (100
periods), ERK2 scheme, CFL = 4. Left: Time-longitude Hovmaller
diagram by intersecting zonal velocity at latitude 6 = 36 deg. Dashed
line= analytic solution. Center: Latitude-time Hovmoller diagram by
intersecting the zonal velocity at longitude A = —18deg. Right:
Max/Min history of the total height h. Resolution 6 x 64 x 64.
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Barotropic EIG wave, (cont.)

’ Time scheme ‘ Courant Number CFL | barotrop. EIG wave ‘

ERK2 1 0.6389%
4 0.6999%
8 0.4405%
RK4 1 unstable
0.9 0.1468%

Table: Test 1-a (barotropic EIG wave). Dispersion analysis at final time
t = 13.5 days (100 periods). The relative velocity errors |AC| are
reported for various values of CFL. The relative error on the velocity is
smaller than 1% in all cases after 100 periods. The RK4 scheme with
CFL = 0.9 corresponds to 1808 time iterations and the ERK2 time

scheme with CFL = 4 corresponds to 407 time iterations.
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Barotropic Rossby wave

Relative error
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Figure: Test 1-b (barotropic Rossby wave). Final time is t = 1203 days
(100 periods), ERK2 scheme, 9289 time iterations with CFL = 16. Left:
total h at final time. Right : history of the relative errors. Resolution

6 x 64 x 64.
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Barotropic Rossby wave, (cont.)
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Figure: Test 1-b (barotropic Rossby wave). Final time is 1203 days, 100
periods. ERK2 time scheme at CFL = 16 and 9289 time iterations. Left:
time-longitude Hovmoller diagram by intersecting the zonal velocity at

0 = 44 deg. Center: latitude-time Hovmoller diagram by intersecting the
zonal velocity at A = —18deg. Right: Maximum and minimum values of
the total h over the full simulation. Resolution is is 6 x 64 x 64.
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Baroclinic EIG and Rossby waves
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Figure: Left: Test 2-a (baroclinic EIG wave). Total height h at final time
t = 190 days (100 periods) with CFL = 5 (ERK 2 scheme) and 431 time
iterations. Right: Test 2-b (baroclinic Rossby wave). Total height at final
time t = 1850 days (100 periods) with CFL =5 and 4313 time
iterations. Resolution: 6 x 64 x 64.
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Baroclinic EIG and Rossby waves (cont.)

Figure: Left : Test 2-a (baroclinic EIG wave). Final time= t = 190 days
(100 periods), with CFL =5 and 431 time iterations. Right : Test 2-b
(baroclinic Rossby wave), final time t = 1850 days (100 periods) with
CFL =5 and 4313 time iterations. ERK2 time scheme.

Resolution=6 x 64 x 64.
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Baroclinic EIG wave
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Figure: Test 2-a (baroclinic EIG wave). ERK2 time scheme with

CFL = 5. Left: time-longitude Hovmoller diagram by intersecting the
zonal velocity at latitude § = 9deg. Center: Latitude-time Hovmoller
diagram by intersecting the zonal velocity at A = —18deg. Right:
max/min of the total height h over the full simulation (final time: 190
days). Resolution: 6 x 64 x 64.
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Baroclinic Rossby wave
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Figure: Test 2-b (baroclinic Rossby wave). ERK2 time scheme with

CFL = 5. Left: Hovmoller diagram by intersecting the zonal velocity at
0 = 0deg. Center: Latitude-time Hovmoller diagram by intersecting the
zonal velocity at longitude A = —18deg. Right: Max/min of h over 1850
days (100 periods). Resolution: 6 x 64 x 64.
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Test case 1

EIG wave

Rossby wave

|

Test case 2

EIG wave

Rossby wave

|

CFL
Relative Mass Error
Relative Energy Error

Relative Enstrophy Error
Mean value divergence

Mean value vorticity

4

1.7666 x 10714
2.6838 x 10~
2.5541 x 10~
1.5840 x 10~ Y7
2.9723 x 1010

16

2.4476 x 10~8
4.8947 x 10~8
3.0250 x 10~8
3.6090 x 10716
5.7501 x 10~ 2

5
2.8297 x 10~ 1%
2.2746 x 1010
2.0419 x 10~
3.6539 x 1020
9.3416 x 10~

5
1.6564 x 10~ 12
3.2573 x 10~ 12
2.9696 x 1013
6.8451 x 10~ 20
8.3526 x 102!

Table: Test 1-a, Test 1-b, Test 2-a and Test 2-b: conservation of invariant
quantities: mass (relative), energy (relative), enstrophy (relative), mean
divergence and mean vorticity. ERK 2 scheme Test 1-a (barotropic EIG
wave): CFL = 4, t = 13.5 days, (100 periods), 407 time iterations. Test

1-b (barotropic Rossby wave): CFL = 16, t = 1203 days, (100 periods),
9289 time iterations. Test 2-a (baroclinic EIG wave): CFL =5, t = 190

days, (100 periods), 431 time iterations. Test 2-b (baroclinic Rossby
wave): CFL =5, t = 1850 days, (100 periods), 4313 time iterations.
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The 1D Munk equation

1D model for wind driven flow

— BOxu(x) + du(x) = f(x), x € (a,b)

un 14
(Munk) {u(a) =u(b)=1d'(a) =d'(b)=0 (14)

Length: v = (¢/8)'/3

FD scheme

— Boxuj+ &bty =F, 1<j<N-1.
(Munk)h{ Poxt T ’ (15)

ug = up = Oxtg = oxuy =0
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Compact finite difference operators
HD compact for O, u

=+ —52) L5, (16)
DBO compact for 97
4 12 I A h_2271 2y2
B == (608 —02) = (1 + 502 71(3) (17)
Accuracy
1 *
— (0¥ u)* = ﬁ/74(8(8 u)* + O(h°). (18)
. 1
6XU* - (axu)* _ _ﬁh4(a)(<5)u)* + O(h6) (19)
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Chekroun Hong Temam test case
Hand manufactured solution
o) = (1= T2 @ulx7) = Q7)) (1= % (20)
with 3
1 3 1
Qu(x,7) = oxp(— 2 ysin(- YD)
2y 2y (21)
1 3 1
@x(x7) = exp( X cos( )

> sequence of solutions with 8 = 10%P, ¢ = 10 and v = (g/7)'/3 = 1077,
p=20,1,2,...

» Easy for p =0,1,2 and difficult for p > 2.

» M.D. Chekroun, Y. Hong and R.M. Temam, Enriched numerical scheme for

singularly perturbed quasi-geostrophic equations, J. Comp. Phys.,416, (2020),
109493.
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Underresolved boundary layer
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Figure: Left: u with N =40 and N = 80. Right: d,u with N = 40 and

N =80
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A multiscale scheme

> Stepsize h in the boundary layer zone. This is the fine zone in
the boundary layer.

» Stepsize Rh in the ocean zone, with R > 1.

» At the transmission node: h on the left, and Rh on the right:
a new scheme is required here.
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A multiscale scheme (cont.)

— B8 uj +edltu; = £*, 1<j< N —1, (fine equispaced scheme using h
— Boeuys +e6tupy = /> (transmission node scheme: h and Rh) (22)

— Boxuj + 8ty = £, N'+1<j< N+ N —1, coarse scheme.
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Design of the scheme at the transmission node ¢

0 00O I 0 00— 00—

Fine side Coarse side

Consider the relation
Sy = 2 4uj+6 4 53 463 23
i = g (Uipn — 40+ 6uj—1 — Aujo + uj-3) — Oxuj2 — 401 (23)
If j is the transmission node, it is enough to interpolate ujy; ~ u(x; + h) on the coarse

side.
Ujp1 = r(uj—4, Uj—3, Uj—2, Uj—1, Uj, Uj4+1, Uj42, Uj+3) (G + h) (24)

with r a 7— order Lagrange polynomial. Finally

-~ 6
éﬁuj S ﬁ(ujﬂ — 4Llj + 6Uj_]_ — 4Llj_2 + Uj_3) — 6§Uj_2 — 4(5;4<Uj_1 (25)
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Sharp boundary layer: Case 1: (¢/38)/3 = 10~*

U, opsil=0.0001, beta= 1.06208, np=25, n=500, R=0.95 100X, opsit= 00001, betax 1.08+08, np=25, n=500, R=0.95 U, opsit= 00001, beta= 1.06+08, npeS0, n=1000, R=9.95

aslf

|
o p——.— oo

' oms 0% I o8 g 2% 0% I 008 v oms 0% 205 08

14X, opait= 00001, beta= 1.06+08, np=50, n=1000, R=9.95

Figure: p=4, ¢ =10"% 8 =108 v =10"* Grid 1. N’ =25, N = 500.
Transmission node at ¢ = —0.99. The problem is not resolved. Grid 2:
N’ =50, N = 1000: the problem is resolved. R ~ 10.
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Sharp boundary layer: Case 1: (¢/5)Y/3 =

U, opsit= 00001, bota= 1.00408, np=200, n=4000, R=0.85 U~ ZQOM ON THE BL. epsit= 00001, bota= 1.0408, np=200, n=4000,

Re0.95

10~* (cont. 1)

10X, opsil= 0.0001, bota= 1.06+08, np=200, n=4000, R=0.35

0% I o £ “osees ) “osens

UX - ZOOMON THE BL, opsit= 00001, beta= 1.06408, np=200, n=4000,

0w

Reg95

Figure: p=4, ¢ =107*%, 8 =108 v =10"*. Grid 4: N’

N = 4000: the problem is well resolved.

= 200,
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Sharp boundary layer: Case 1: (¢/8)'/3 = 10~* (cont. 2)

Max norm rate - Coarse grid, epsil= 0.0001, beta= 1.0e+08 Max norm rate - Fine grid (BL), epsil= 0.0001, beta= 1.0e+08

10
100 —5— mean slope erroru: 128 —5— mean siope eror 378
—&— mean slope error ux: 861 —6— mean sope error ux: 388
/// H
102 e
0° et
=
o 7
: /e//
e A //
S 2 o
0
s Bt L =
e i
10718 10
o5 1 15 2 25 3 35 1 2 3 4
x10° x10*

Figure: p=4, ¢ = 10~%, 3 =108, v = 10~*. Convergence rates.
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Sharp boundary layer: Case 2: (¢/8)/3 =107°

U, opsil= 10:05, bota= 100410, np=50, n=250, R=399.8 U-ZOOM ON THE BL, apsit= 10:05, beta= 1.00+10, np=50, n=250, R=399.8 100X, opsils 10-05, beta= 1.06+10, npe50, n=250, R=399.8
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Figure: p =15, ¢ = 107>, 3 = 10%°, v = 1075, Transmission node at
x = —0.999. Grid 1: N/ =50, N = 250: the problem is already well
resolved.
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Sharp boundary layer: Case 2: (¢/38)'/3 =107°, (cont. 1)

U, opsit= 10.05, bota= 1.06+10, np=800, n=4000, R=398.8 U-ZQOM ON THE BL, opsii= 10-05, beta= 1.06+10, np=300, n=4000, R=399.5

11X, opsi= 1605, bota= 1.06+10, np=800, n=4000, R=393.3

' e om0 “os8s Iy el 0005 ) 00005 o098 ' o995 ) o085

UXZOOMON THE BL. epsit= 1005, beta= 1.06+10, np=800, n=4000, R=395.8

Figure: p=15, ¢ = 107>, 3 =10%, v = 1075, Grid 4: N’ = 800,
N = 4000: the problem is accurately resolved.
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= 1075, Convergence rates.

(cont. 2)

41/71



ESI workshop, Waves motion at the planetary scale, Vienna, May 23 2023 !

UNIVERSITE = )
DE LORRAINE :Eﬂt ARTAN

LHigh order finite difference scheme for the one-dimensional Munk equation

Empirical rules

» The transmission node must be located sufficiently far from
the BL. A factor of at least 10 times the width of the BL
seems appropriate.

» The accuracy in the coarse zone must be as high as possible.
We try to reach the computer accuracy in the coarse zone.
This is a good indicator that the accuracy in the BL will be
also good.
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The Cubed Sphere: why is it useful ?

What is known

» The Cubed Sphere has the symmetry group of the Cube (J.-B. Bellet). No pole
problem.

» The Cubed Sphere is observed to have good approximation properties when
combined with PDE’s numerical methods: FEM (finite element method), FV
(finite volume), DG (discontinuous Galerkin), FD (finite differences).

What is needed

»> Need of a canonical Spherical Harmonics (SH) basis analog of the sine/cosine
basis on S1.

» Need of a well conditioned SH basis for the interpolation problem, in which
pseudospectral calculus for PDE's is accurate and easily implementable.

» Need of a least squares well conditioned framework.
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Spherical Harmonics

» They are the harmonic polynomials in R3: p € R[x,y, z] with Ap = 0.
> Hilbert basis Y, 0 < |m| < n < 400 of L?(S?)

Y(x(6, ) = Ci" - cosl™ (0) - @47 (sin 0) - {

with
- x(6, ¢) = (cos 6 cos ¢, cosOsin ¢, sin ), ¢ € [0,27): longitude and
0 € [—7/2,7/2] : latitude.
- normalizing constant CJ" € R,

dlml+n
dt|m\+n 2"n'

- Legendre polynomial lel(t) = (£ — 1)", degree n — |m|

» Finite dimensional subspace of the Spherical Harmonics with degree < D
Yp = Span{Y,)", Im| < n< D}

The restriction to any great circle of any f € )V)p is a trigonometric polynomial in the
angular variable with degree < D.
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Structure of Vp

» Space Y,: restriction to S? of the harmonic polynomials of degree k
in (x,y, 2).
dimY, =2k + 1.

> Space Vp = ®P_ Yy, dimYp = (D +1)2

> Expansion of a function u € L2(S?) in Vp: analog of a
trigonometric polynomial expansion of f € L2(S!) in cos kx, sin kx.
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Least squares approximation on the Cubed Sphere with
Spherical Harmonics

» Problem Setup:
1. Fix a maximal degree D (maximal angular frequency). This
gives the space Vp. One has D < N.
2. For a given set of values y; € R at the Cubed Sphere nodes x;,
compute the least squares Spherical Harmonics f € Vp
solution of

N
inf f(x;) -y L
A, 2 1) = (L3)
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Vandermonde matrix

> Data: y = [yjl;<j<f, (vj =value at x; € CSy)
> Unknown: f =[] mi<n<p. £ = 3 mi<n<n T YaT € Vb

» Associated Vandermonde matrix:

m N/ 2
Ap = [V (x))]1<j<A, |m|<n<D € R (P+D)

P> Least squares problem

Cinf[[Aof — vl (LS)
feR(D+1)
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Resolution of the least squares problem

Standard solution

» (LS) admits a unique solution only in the case where Ap is full column-rank or
equivalently if AEAD is positive definite.

> In this case the solution f satisfies
T £ AT ?_ -1
ALAp f = ALy <= f = (ALAp) 'ALy
> Otherwise, some regularization/selection is required to define a solution f.

Open theoretical problem
Find the largest degree D such that (LS) satisfies:
> Ap is full column-rank.

> Condition number of AL Ap is small.
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Partial results

The VDM matrix Ap is

_ .
Ap = [V (xj)]1<j<R, |mj<n<D € RVM*(PH" N = 6N 2

1. Ag € RV\ {0} is full rank (rank 1).
2. Ap full rank = (D +1)> <N = D < N/2 -1,
» Upper bound: N'/2 —1 =+/6N — 1+ o(1) ~ 2.45N
3. For1< N <4, Ap full rank = D <2N —1:
YN (9, ¢ — T) € Vop is null on CSy
> Y2V (0, 6 — T)=x-sin2N(¢ — T)
> CSy C{x(0,0): 9= 7 [5x1}
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Statistics of the singular values of Ayy_1, 1 < N < 32

25 ‘ . , . . :
O  ming;
x  cond(Aoy_1) = maxo;/ mino;
20 OOC
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Ooo » Apn_1 is numerically
(6]
15 OOO 1 observed as full rank
OOO (min O‘,'(AQN_l) > 0),
O
O
10 Ooo 1 > COI"Id(AzN_l) ~ 1.19
O . .
50° » (LS) is well-conditioned
o
5¢ © 1 for D=2N -1
O
OO
@@XXXXXXXXXXXXXXXXXXXXXXXXXXXXX
0 ‘ . . . . .
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N
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Statistics of the singular values of Ayy, 1 < N < 32

1040 - - - - -
O  mino;
M x  cond(Ayy) = maxo;/ mino; .
109 ] » Ay is not full rank for
small values of N
1020 1 . -
Xxxx x x (min oj(Axn) ~ 0)
1010 kxR » Whenever A,y is full
X XX
LR SE L rank, one observes
100 ] :
0 © 0090600600060 numerically that
000000,
1010k 0o cond(AgN) > 10*
O O . .
N o g » (LS) is numerically
10- . T . P
ill-conditioned for
1090 1 D =2N
T 8
o T | il (cond(Al\Axn) > 10°)
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Numerical evidence

» The maximal degree for (LS) to be well posed with a full rank
VDM matrix is D = 2N — 1.

» In this case, (LS) is well-conditioned (condition number ~ 1).

» Any f € Yon—1 is faithfully represented (sampled) on CSy.
The (LS) problem reconstructs exactly f from the restriction
f|c5N.

» The Cubed Sphere represents the equatorial line with a
step-size 0 = 5y.

» For trigonometric polynomials sampled with a step-size 9, the
Nyquist Shannon angular frequency is defined as § = 2N.

> ’ Main observation: ‘ the critical frequency for sampling along

the equator coincides with the critical frequency for sampling
on the Cubed Sphere!
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Error evaluation in the least squares approximation of a
function

> Function f evaluated on CSy = {x;, 1 < j < N} provides the
data y;
yi=f(x;), 1<j<N
» Compute f € Yoy_1, solution to (LS) with degree D = 2N —1

> Relative ¢2-error on CSy, (for some large M)

(Secs,, IF) = F0R\ 2
mlh) "( > econ [P )
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Test functions

» Very smooth: fi(x,y, z) = exp(x)

» Smooth
f2(x7 Y, Z) =z eXp[ (Ox— 2) (9)/22)2 o (92:2)2]
2
+ %exp[—% _ % o 921-(|)—1
X — 2 _3)2 , 2

+ %exp[_(g 47) _ (9y43) (o 45) ]

— 3 exp[~(9x —4)° — (9y 7" — (92~ 5]
> Splke f},(X y,Z) 10 %1(2 > 1)

> Not differentiable: fy(x,y, z) = cos(3arccos z)1(3arccosz < 7))

> Discontinuous spherical cap: fs(x,y,z) = 1(z > 1)
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Fast convergence for smooth functions

10%

10"

10-10

Relative ¢*-error on OSg; (without noise)

Figure: Relative h Error in function of the resolution N
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Stability (noisy data)

102
8100
I
z
R
wn
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,§ —a—e(f1)
k5 —o—e(h)
S)j 10’3 G(fs)
——e(f1)
—o—fs)
0-10
10710 107 10°

Level of noise o = 2/, =31 <i <2

Figure: Evolution of the h error in
function of the noise magnitude (N = 32)

Noisy data
yj = f(x;) +oN(0,1),1<j< N

Numerical observation
e(f)(o) = e(F)(0) + o

Conclusion
Good stability !
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Convergence for derivatives

Numerical observation
The error on the derivative behaves as the error

on the function.

Relative -error (on CSy)

1< N <32

Figure: Functions f; and f: relative h
Error of the derivative in ¢ (longitude) in

function of the resolution N.
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Interpolation problem

Data on the sphere

> Values y; € R given at the nodes x;, 1 < j < N on the Cubed Sphere.

Problem
Find an integer N’ = N’(N) and a subspace Yy, C Yy, such that the problem

p(x;) =y, V1 <j<N.

with p € Yy, has a unique solution (unisolvence) and is well conditioned.
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Vandermonde matrix (collocation matrix)

» For k fixed, the rectangular matrix Ak is the VDM matrix
associated to the basis (Y)")_x<m<k of the SH space Y, and
to the nodes x; € CSy,

Ak £ [Yﬁ(xj)hgg/v,fkgmgk € RNX(2k+1)~ (26)

» For n fixed, the matrix A, is the VDM matrix associated to
the basis (Y}")|m|<k<n of the SH space Y,

A, 2 [Ao An} e RNx(r+1)?, (27)
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Rank increment

» For all n > 0, the rank of A, is denoted by r, and the rank
increment between A,_1 and A, is denoted by gj:

rn=rankA,, n >0, (a)

28
érn_rn—1>nZO7 (b) ( )

8n

(with r_1 20, go=r).
> How the sequence of rank increments g, behaves with
increasing n ?
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Rank increment (cont.)

Facts:
» For n large enough, we have rank(A,) = N.

» We call N'(N) the smallest integer n such that A, has full
row rank N.

» Numerical ansatz: N'(N) = 3N.
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Echelon form and incremental algorithm

perform an incremental Row Echelon factorization of the VDM matrix

A,.

Theorem (Structure of A,)

Let n> 0.
The matrix A,, can be factorized in the form

A, = V,E,UT, (29)

where
» the matrices U, € R("+1)2X(”+1)2, V, c RVXN g orthogonal;
» the matrix E, € RNX(”H)Z is in Row Echelon form.

In particular, rank(E,) = rank(An) = rn.
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Row Echelon Form of A,

Tn

Figure: Left panel: the VDM A, is equivalent to the row echelon matrix

E,, whose shape is represented in gray. Right panel: elimination of

redundant columns in E,, results in the upper triangular matrix R,

displayed in gray. (The white color represents zero entries.) 6371
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Row Echelon form (cont.)

» The algorithm consists in a sequence of SVD factorizations of matrices of size
N x (2k +1), 0 < k,

VoS UT 2V, 1 ([1: N]), [ra1 +1: N)TA,

» The matrices V,, E,, U, are assembled iteratively.

Proposition (Orthonormal bases of ranges and null spaces)

(i) For every n > 0, the columns of V,([1 : N, [1: ra]) are an orthonormal basis of
Ran A,.

(ii) For every n > 0, the columns of V,([1 : N, [ra + 1 : N]) are an orthonormal basis
Ker AT.

(iii) For every n > 1, the columns of Un([1: NJ, [1: ga]) are an orthonormal basis of
Ran ATV, _1([1: N], [ra—1 +1: N]). (iv) For every n > 1, the columns of

Un([1: N, [gn +1:2n+ 1]), are an orthonormal basis of

Ker V,_1([1: N], [rn—1 +1: N])TA,.

» Algorithm exits when r, = N.
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Structure of the interpolation space

» For each n, one has a decomposition of Y, as
Y, =Y, oY,

with Y/ = the SH of degree n not already represented by the
space U = @] _ lY’

» A relevant SH subspace given by the algorithm is

Usy = 3N Y)
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Poisson problem (continuous level)

> for g : x €S2+ g(x). Consider the null mean Poisson equation on the sphere:

Au=gonS?,

/ udo = 0.
S2

g=>_ > &mYy (30)

n>0|m|<n

> Expansion in SH

»> Using
AY) = —n(n+1)Y,T, (31)

the solution is expressed as
P SIS (32)
P51 mien n(n+ 1)

> Approximation: do the same in the finite dimensional space Usy.
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Approximate Poisson problem in Usy

cs, Sy S5

10910(€)

Figure: Poisson equation solver error on CSy for N € {8,16,32}. The
relative error is plotted related to the value m for 30 random values e,
and dp, in [0,27]. Each gray dotted line corresponds to a random value.
The black line is the mean error.
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Quadrature on the sphere
Theorem (Quadrature rule)

Letu:S% — Rbea given function. The quadrature rule Q is defined by

owu= [, Inlules,lde.

(i) The formula Qp can be expressed as follows:

N
Onu =" wn(xj)ulx), (33)
j=t
where the weight function wy € F(CSy) is defined by

lon()] = (AT) "' [Vam 0 - q]T, (34)

with A the Vandermonde matrix.
(ii) The formula Qy is exact on the space Uzy,

Yu € Usy, Qnu= /2 u(x)do.
S

In addition, the rule Qp and the weight function wp are invariant under the group G of CSy.
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Quadrature on the sphere
i fi(x,y,2) Jeo filx, y, z)do Ref.
1 exp(x) 14.7680137457653 - - - [2.7]
2 2 2
2 Jep[— (2R _ (22T (92220 6.6061822200736179523 - - - 2.2,2,2,7
ox+1)2
+5 el Ol _ 201 _ o)
1 (0x=7)2 _ (9y—=3)% _ (9z-5)°
e I e S
— L exp[—(9x — 4)? — (9y — 7)? — (92 — 5)?
3 L __eebddyidn) g g 4.090220018862976 - - - 7
10 (2421 (z+1)2)1/2 (z>-1) gl
4 cos(3arccosz)1(3arccosz < T) 3 inspired from [?]
5 1z>1) ™
6 %[1 + sign(—9x — 9y + 9z)] ‘%" [?,2,2,?

Table: Several test functions and exact mean values.
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Summary and questions

> CS is a set of nodes on the sphere with a good
"approximation power”. In which cases is the icosahedron grid
proved to be better 7

» Cartesian local structure, great circles coordinate lines make
CS an interesting mathematical object. Finite differencing
along these circles is effectively high order. No significant
interpanel problems. Computational efficiency ?

» CS supports a natural discrete harmonic analysis setup. Full
mathematical analysis remains to be done. Fast global solver
on the CS 7

» Munk-Stommel equations with the problems of oceanic gyres
and western boundary layers are very attractive. What is the
main message concerning this problem for theoretical and
numerical analysis coming from the oceanographic community 71/7
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